The Arctic’s diverse vegetation is one of the key factors in the energy exchange between the Earth’s land surface and the atmosphere which is so far disregarded in climate models. This is the conclusion of a newly published paper in Nature Communications by a team of international researchers including GEUS.
Arctic vegetation is highly diverse and ranges from dry grasslands and wetlands to scrubland dominated by dwarf shrubs as well as barrens with mosses and lichens. The researchers linked this vegetation diversity to all available energy exchange data collected in the Arctic between 1994 and 2021 including GEUS’ ice and glacier monitoring data from PROMICE, GC-Net and GEM as main sources.
“We now know which plant communities have a particularly pronounced cooling or warming effect through energy exchange. This enables us to determine how changes in plant communities, which are occurring in many regions in the Arctic, are affecting permafrost and the climate,” says UZH professor Gabriela Schaepman-Strub from the Department of Evolutionary Biology and Environmental Studies of the University of Zurich (UZH), leading the study.
Especially shrubs will drive up the amount of energy going into the terrain, researchers found, compared to lower and lighter colored type vegetation.
“Remarkably, in summer the difference in heat flux between two types of vegetation – such as a landscape dominated by lichens and mosses and one with shrubs – is about the same as between the surface of glaciers and green grasslands,” postdoc Jacqueline Oehri first author of the paper explains.
“The shrubs’ dark branches emerge from under the snow early, absorb sunlight and pass it on to the surface long before the snow melts away,” she adds.