Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018)

Jonas K. Andersen1, Robert S. Fausto*1, Karina Hansen1, Jason E. Box1, Signe B. Andersen1, Andreas P. Ahlstrøm1, Dirk van As1, Michele Citterio1, William Colgan1, Nanna B. Karlsson1, Kristian K. Kjeldsen1, Niels J. Korsgaard1, Signe H. Larsen1, Kenneth D. Mankoff1, Allan Ø. Pedersen1, Christopher L. Shields1, Anne Solgaard1 & Baptiste Vandecrux1 

RESEARCH ARTICLE | OPEN ACCESS

GEUS Bulletin Vol 43 | e2019430202 | Published online: 26 June 2019 

https://doi.org/10.34194/GEUSB-201943-02-02

Download Article (PDF)


The Greenland ice sheet has been losing mass in response to increased surface melting (Khan et al. 2015; van den Broeke et al. 2017) as well as discharge of ice from marine terminating outlet glaciers (van den Broeke et al. 2009; Box et al. 2018). Marine terminating outlet glaciers flow to the ocean where they lose mass by e.g. iceberg calving. Currently, the mass loss from the Greenland ice sheet is the largest Arctic contributor to global sea-level rise (van den Broeke et al. 2009, 2017; Box et al. 2018). Therefore, monitoring changes in the Greenland ice sheet is essential to provide policy makers with reliable data.

There is a consensus that most marine terminating outlet glaciers have retreated in recent decades, and that the increased calving rates are a response to recent atmospheric and oceanic warming (e.g. Box et al. 2018; Moon et al. 2018). The rate of dynamic mass loss is determined by changes of the glacier calving front (i.e. its terminus) position, ice thickness and changes in ice flow. Ocean temperature and fjord circulation also influence the calving front stability by melting the glacier below the water line, thinning the ice that is in contact with water (Moon et al. 2014). Change in calving front position is therefore an important indicator for monitoring the dynamic behaviour of the upstream area of the ice sheet, which is further modulated by local topographic features and buttressing effects (Rignot & Kanagaratnam 2006; Nick et al. 2009).

The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) is dedicated to monitoring changes in the mass budget of the Greenland ice sheet, including monitoring of the calving front lines of marine terminating outlet glaciers. Here, we present an updated collection of annual measurements of end-of-melt-season calving front lines for 47 marine terminating outlet glaciers in Greenland between 1999 and 2018. We also present an example application of the data set, in which we estimate area changes for this group of glaciers since 1999. The Greenland calving front lines were measured from optical satellite imagery obtained from Landsat, Aster, and Sentinel-2 (Table 1). The PROMICE calving front product is freely available for download as ESRI shapefiles.

AUTHOR INFORMATION

*Corresponding author | Email: rsf@geus.dk

1 Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen K, Denmark

ABOUT THIS ARTICLE

This article is published in the Geological Survey of Denmark and Greenland Bulletin – an international, peer-reviewed and open access journal published by the Geological Survey of Denmark and Greenland (GEUS).

HOW TO CITE

Andersen, J.K., Fausto, R.S., Hansen, K., Box, J.E., Andersen, S.B., Ahlstrøm, A.P., van As, D., Citterio, M., Colgan, W., Karlsson, N.B., Kjeldsen, K.K., Korsgaard, N.J., Larsen, S.H., Mankoff, K.D., Pedersen, A.Ø., Shields, C.L., Solgaard, A. & Vandecrux, B. 2019: Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018). Geological Survey of Denmark and Greenland Bulletin 43, e2019430202. https://doi.org/10.34194/GEUSB-201943-02-02 

SUPPLEMENTARY INFORMATION

The PROMICE calving front product

COPYRIGHT AND PERMISSIONS

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. GEUS Bulletin is free to individuals and institutions in electronic form. Downloaded copies of this journal or articles in this journal may be distributed for non-commercial purposes without charge, provided that appropriate citation is given. The author(s) retain copyright over the article contents.

GEUS copyright clause: Any commercial use of the Bulletin or the articles contained herein is expressly prohibited without the written consent of the editor and author(s).

PUBLICATION HISTORY

Date recieved: 08/02/2019

Date accepted: 03/06/2019

First published online: 26/06/2019

KEYWORDS

Greenland . Glacier . Calving front line . Marine terminating glacier . Climate change