Provenance of basinal sandstones in the Upper Jurassic Hareelv Formation, Jameson Land Basin, East Greenland

Mette Olivarius, Morten Bjerager, Nynke Keulen, Christian Knudsen and Thomas F. Kokfelt

Zircon U–Pb geochronology and heavy mineral CCSEM analysis were used to interpret the provenance of Oxfordian–Volgian sandstones of the Hareelv Formation in East Greenland. Six samples were collected from the Blokelv-1 core drilled in southern Jameson Land, and the zircon age distributions and heavy-mineral assemblages are quite uniform. The samples contain a wide spectrum of Archaean to Palaeozoic zircon ages with peak ages at 2.71, 2.49, 1.95, 1.65, 1.49, 1.37, 1.10 and 0.43 Ga when combining all data. The heavy-mineral compositions show derivation from felsic source rocks, some of which were metamorphic. The results reveal that the sediment was derived from the Caledonides, and it is plausible that some or all of the material has experienced several cycles of sedimentation. Devonian and Carboniferous sediments preserved north of the area have zircon age distributions that correspond to those from the Hareelv Formation, and such rocks may have been reworked into the Jameson Land Basin. The provenance signature describes both the gravity-flow sandstones of the Hareelv Formation and the delta-edge sands that are inferred to have fed them. Lithological and provenance contrasts between the sandstones of the Sjællandselv Member and those of the Katedralen Member indicate a shorter transport distance, source to sink, suggestive of proximal topographic rejuvenation in the Volgian.

Keywords: East Greenland, Hareelv Formation, Upper Jurassic, sediment provenance, zircon geochronology, heavy-mineral analysis

Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
E-mail: mol@geus.dk

The fully cored borehole Blokelv-1 was drilled in 2008 to a depth of 233.8 m in southern Jameson Land, East Greenland (Fig. 1) to provide reservoir and source-rock information on the mudstone-dominated Upper Jurassic Hareelv Formation that also includes numerous gravity-flow sandstones (Bjerager et al. 2018a, this volume). The East Greenland Caledonides, which form the basement for the Mesozoic succession, comprise a complex series of Archaean to Palaeozoic lithologies (Higgins & Leslie 2008), and therefore the post-Caledonian sedimentary successions preserved along the East and North-East Greenland coast (Fig. 1) are expected to contain a wide range of zircon age populations. Detrital zircon ages from Jurassic sediments in East Greenland have previously only been reported from the Lower Jurassic succession in the Jameson Land Basin where the elevated Liverpool Land High was the primary source area (Slama et al. 2011). Significantly different zircon age distributions are to be expected in the Upper Jurassic sediments in the Jameson Land Basin since the Liverpool Land High was gradually onlapped and drowned during the Middle Jurassic (Surlyk 2003). The present study employs zircon geochronology and heavy-mineral analysis to characterise the Upper Jurassic sandstones of the Hareelv Formation in the Blokelv-1 core and to identify the source areas of these sandstones.
Geological setting

The Caledonian Orogen in East Greenland formed during the Palaeozoic closure of the Iapetus Ocean and continental collision between Baltica and Laurentia (McKerrow et al. 2000). The Caledonian foreland of Laurentia (Greenland) consists mainly of crystalline rocks that are presently exposed in tectonic windows along the rim of the Greenland ice sheet (Fig. 1; Henriksen et al. 2008). The Caledonian Orogen is composed of several westward displaced thrust sheets that consist of Archaean to Silurian crystalline and sedimentary rocks (Higgins et al. 2004). The crystalline complexes in the orogen were formed during Archaean and Palaeoproterozoic times (Thrane 2002). The sediments of the Krummedal supracrustal sequence were deposited in the late Mesoproterozoic to early Neoproterozoic and underwent high-grade metamorphism, migmatisation and partial melting in the early Neoproterozoic (Kalsbeek et al. 2000, 2008a; Watt et al. 2000). A thick sedimentary succession was subsequently deposited in the eastern part of the area which consists of the Neoproterozoic Eleonore Bay Supergroup overlain by the upper Neoproterozoic Tillite Group and the Lower Palaeozoic Kong Oscar Fjord Group (Higgins et al. 2004). This succession and the underlying basement units were partially affected by Caledonian metamorphism. Marine sedimentation was terminated during the uplift caused by the Caledonian crustal thickening, and late- to post-Caledonian continental sediments were deposited during the Devonian after the extensional collapse of the Caledonian Orogen (Larsen et al. 2008). The Caledonian Orogeny caused renewed granite intrusion and migmatisation during the Ordovician–Silurian (Kalsbeek et al. 2001).
The post-Caledonian sedimentary succession of Carboniferous to Palaeogene age is exposed along the coast of East and North-East Greenland from 70° to 76°N (Fig. 1; e.g. Stemmerik et al. 1992) except where it is overlain by extensive Palaeogene plateau basalts that were extruded in association with the North Atlantic continental break-up (Brooks 2011). Thermal subsidence in the sedimentary basins was succeeded by rifting in the Middle Jurassic and a thick succession was deposited in the Jameson Land Basin until the rifting in the region waned in the earliest Cretaceous (Surlyk 2003).

The Oxfordian Olympen Formation with its marine basinal mudstones and deltaic sandstones is the only part of the Upper Jurassic succession that is preserved in northern Jameson Land (Fig. 2), where it is exposed on the highest mountain peaks (Larsen & Surlyk 2003).

The orientation of planar cross-bedding in the delta-top deposits in the upper part of the formation (Zeus Member) shows that the delta prograded towards the south. In southern Jameson Land, a near-complete Upper Jurassic succession is exposed and consists of basinal mudstones interbedded with gravity-flow sandstones of the Oxfordian–Kimmeridgian Katedralen Member of the Hareelv Formation (Surlyk 2003). These sandstones were formed by collapse of the drowned shelf-edge delta deposits of the Olympen Formation situated at the northern margin of the Jameson Land Basin (Figs 2, 3) (Bjerager et al. 2018b, this volume). Some of the gravity-flow sandstones of the Katedralen Member were remobilised and intraformationally injected after burial (Surlyk et al. 2007). The coarser-grained gravity-flow sandstones of the Volgian Sjællandselv Member of the Hareelv Formation

Fig. 2. Stratigraphic scheme of the Upper Jurassic succession in Jameson Land based on Bjerager et al. (2018b, this volume).
were subsequently deposited in the Jameson Land Basin (Fig. 3) in response to a regional sea-level fall; southwards progradation of the shelf-edge clinothems of the Raukelv Formation into the basin led to repeated shelf-edge collapse and the initiation of the gravity flows (Surlyk 2003; Surlyk & Noe-Nygaard 2005).

The provenance of the Jurassic sedimentary basins in East Greenland based on sedimentological data has been interpreted as the basement rocks of the Greenland craton, in addition to some reworking of clastic sediments (Surlyk 2003). The Devonian–Carboniferous sediments exposed north of Jameson Land during the Early Jurassic were onlapped during the Middle Jurassic and thus became less important sediment sources, but this situation may have changed during the Late Jurassic due to increased rifting and consequent exhumation and erosion of uplifted fault-block crests.

Samples and methods
Provenance analysis was performed on sandstones from six intervals in the Blokelv-1 core (Fig. 2). Five of the samples are from the Katedralen Member (sample ID 2–6) and one is from the Sjællandselv Member (sample ID 1) of the Hareelv Formation. The sampled sandstones are structureless, grey, fine- to medium-grained, moderately to well-sorted and the grains are angular to sub-rounded (Bjerager et al. 2018a, this volume). Some of the sampled sandstones comprise high-density turbidites (sample ID 1, 4) whereas others are injectites (sample ID 2, 3, 5, 6).

Zircon U–Pb geochronology
Samples were crushed in order to liberate the individual grains and then sieved to retrieve the fraction <500 µm. Heavy-mineral concentrates were produced on a water-shaking Wilfley table. Zircon grains were hand-picked
in a random fashion to ensure that all grain sizes, shapes and colours were represented. The grains were cast into epoxy and polished to expose a central cross-section of each grain. The mount was cleaned in an ultrasonic bath with propanol, and then loaded into the sample cell of the laser ablation system for age dating. Approximately 160 grains were analysed per sample ensuring that even small age populations are detected (Vermeesch 2004).

All data were acquired with a single spot analysis on individual zircon grains using a beam diameter of 30 µm and a crater depth of c. 15–20 µm. The amount of ablated material approximates 200–300 ng for the ablation time of 30 sec. The ablated material was analysed on an Element2 (Thermo Finnigan, Bremen) single-collector, double focusing, magnetic sector-field, inductively coupled plasma mass spectrometer (ICP-MS) with a fast-field regulator for increased scanning speed. The total acquisition time for each analysis was 60 sec., with the first 30 sec. used to measure the gas blank. The instrument was tuned to give large, stable signals for the 206Pb and 238U peaks, low background count rates (typically around 150 counts per second for 206Pb) and low oxide production rates (238U/16O/238U generally below 2.5%). 202Hg, 204(Pb+Hg), 206Pb, 207Pb, 208Pb, 232Th and 238U intensities were determined through peak jumping using electrostatic scanning in low-resolution mode and with the magnet resting at 202Hg. Mass 202Hg was measured to monitor the 204Hg interference on 204Pb where the 202Hg/204Hg ≡ 4.36, which can be used to correct significant common Pb contributions using the model of Stacey & Kramers (1975).

The elemental fractionation induced by the laser ablation and the instrumental mass bias on measured isotopic ratios were corrected through standard-sample bracketing using the GJ-1 zircon (Jackson et al. 2004). Long-term external reproducibility was monitored by repeated analyses of the Plešovice zircon standard (Slama et al. 2008). The analytical data are reported in an online supplementary data file. The reported ages are based on 207Pb/206Pb derived ages for the >0.8 Ga (billion years) analyses, and 206Pb/238U ages for the <0.8 Ga analyses, as the latter is more precise for the younger age range. The propagation of the analytical errors follows the principles of Sambridge & Lambert (1997). Age measurements lacking a stable 207Pb/206Pb plateau or with a U/Pb or Pb/Pb error >10% were discarded. A correction for common Pb was applied on up to 7% of the concordant analyses from each sample. The data are plotted using kernel density estimation (Vermeesch 2012) employing analyses that are <10% discordant.

Heavy-mineral analysis

The grain-size interval 45–710 µm was collected by sieving of crushed samples. Heavy-liquid separation utilised bromoform with a specific density of 2.82 g/cm³, and the total heavy-mineral weight percentage (wt%) of the chosen grain-size interval was measured. The heavy-mineral concentrates were embedded in epoxy and polished. Heavy-mineral chemistry was determined by computer-controlled scanning electron microscopy (CCSEM) at GEUS on a Philips XL40 SEM equipped with two energy dispersive X-ray (EDX) detectors: a Thermo Nanotrace and a Pioneer Voyager detector (Keulen et al. 2008, 2012). Approximately 1200 grains were analysed in each sample, of which between 22 and 327 grains were used in the mineral statistics. This is because the heavy-mineral samples contain mica minerals and authigenic heavy minerals, which were excluded from the heavy-mineral suite results due to their dependency on depositional environment and diagenesis. As there is a large compositional overlap between the minerals amphibole, pyroxene and tourmaline in standard-less EDX analyses, these have been combined into one group in this study, labelled mafic minerals. The group of other heavy minerals includes ilmenite, corundum, monazite and xenotime, each of which is present in amounts <5%.

Results

The zircon U–Pb age data can be found in the online supplementary material. The age data are displayed using kernel-density estimation (Fig. 4) and cumulative age distribution (Fig. 5). The zircon ages cover a broad Archaean to Palaeozoic age span, but with the dominant zircon U–Pb ages occurring between 2.0 and 1.0 Ga (Fig. 4). Eight peak ages are present when combining all data: 2.71, 2.49, 1.95, 1.65, 1.49, 1.37, 1.10 and 0.43 Ga.

The relative proportion between the ages in each sample is illustrated by dividing the data into six age intervals (Table 1). The grains older than 2.2 Ga comprise 12–23% of each sample, whereas grains with ages of 2.2–1.8 Ga constitute 6–23%. Pronounced peak ages are present within each of the 1.8–1.6, 1.6–1.3 and 1.3–0.8 Ga age intervals, which cover 17–25, 14–22 and 18–34% of the measured ages, respectively (Table 1). The youngest age interval of 0.6–0.3 Ga is present in small proportions of 0–3% in the samples.

The shallowest sample (sample ID 1) is the only sample that does not have an age peak at 1.66–1.64 Ga, which is pronounced in the other samples (Fig. 4). The
cumulative age distributions show that no significant difference exists between the six measured age distributions since the distance between the curves is small (Fig. 5).

Kolmogorov-Smirnov (K-S) tests (Guynn & Gehrels 2010) were performed on the zircon age data to determine if the samples were derived from different sources by comparing the distance between the cumulative age-distribution curves (Fig. 5). Two samples are regarded as significantly dissimilar if they have a P-value <0.05 and they will then probably have different provenance. The results show that all P-values are >0.05 (Table 2). It is therefore unlikely that the samples came from different parent populations at a 95% confidence level. The samples ID 2–4 resemble each other well according to the high P-values of 0.99. The sample ID 5 shows good resemblance to the samples ID 1 and ID 6 (P-values of 0.97 and 0.91, respectively).

Table 1. Distribution in six age intervals of the analysed zircon grains with concordant ages

<table>
<thead>
<tr>
<th>Age interval (Ga)</th>
<th>Min. age</th>
<th>Max. age</th>
<th>0.3</th>
<th>0.6</th>
<th>1.0</th>
<th>1.3</th>
<th>1.6</th>
<th>1.8</th>
<th>2.2</th>
<th>2.8</th>
<th>3.2</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.41 m ID 1</td>
<td>2</td>
<td>27</td>
<td>20</td>
<td>17</td>
<td>12</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.16 m ID 2</td>
<td>3</td>
<td>27</td>
<td>22</td>
<td>19</td>
<td>12</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.78 m ID 3</td>
<td>0</td>
<td>34</td>
<td>17</td>
<td>24</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.27 m ID 4</td>
<td>3</td>
<td>31</td>
<td>18</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181.53 m ID 5</td>
<td>3</td>
<td>24</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221.18 m ID 6</td>
<td>2</td>
<td>18</td>
<td>17</td>
<td>25</td>
<td>20</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Zircon U–Pb ages of the Hareelv Formation. The ages are plotted with a black line and annotated peak ages using kernel density estimation (Vermeesch 2012) and histograms with a 25 Myr bin interval. Only zircon ages with <10% discordance are plotted, which is signified by "n/N" (the number of concordant analyses out of the total number of analyses). The lowermost panel shows the distribution of all zircon ages from the six samples, and this dotted line is shown on all samples for comparison.
The heavy-mineral assemblage consists, in decreasing order of abundance, of rutile, mafic minerals, zircon, leucoxene, garnet, apatite, epidote, olivine and small amounts of other minerals (Fig. 6). The garnets are classified as almandine and generally contain more Mg than Ca. When including mica minerals in the heavy-mineral assemblage, they constitute 60–91% of the mineral grains. Muscovite comprises 72–98% of the mica minerals. The heavy-mineral content is largest in the uppermost sample (Table 3).

Discussion

The age distribution of all analysed zircon grains from the Hareelv Formation is shown in Fig. 7A, and selected published zircon age data from older rocks in the area are shown in Figs 7B–H for comparison.

Basement and metasediment signal

The dominant zircon age populations present in the crystalline basement complexes of East Greenland (Fig. 1) have age ranges of about 2.8–2.5 and 2.0–1.8 Ga (Fig. 7H; Thrane 2002). These Archaean and Palaeoproterozoic rocks are primarily orthogneisses of granitic to tonalitic composition, and their heavy-mineral assemblages are therefore dominated by mafic minerals and mica minerals. The metasedimentary rocks of the Krummedal supracrustal sequence (Fig. 1) mainly have zircon ages of 1.8–1.0 Ga (Fig. 7G; Watt et al. 2000; Leslie & Nutman 2003). They consist primarily of pelitic and psammitic metasediments that underwent intermediate to high-grade metamorphism, resulting in a heavy-mineral assemblage dominated by mica minerals and garnet with localised sillimanite (Watt & Thrane 2001; Leslie & Nutman 2003).

The zircon ages of the Archaean and Palaeoproterozoic basement complexes in East Greenland correspond largely to two of the oldest age populations recorded in the Hareelv Formation with peak ages of 2.71 and 1.95 Ga (Fig. 7). However, the latest Archaean to earliest Palaeoproterozoic ages in the Hareelv Formation with a peak age of 2.49 Ga are not comparable to ages reported by Thrane (2002) from the basement complexes west of Kong Oscar Fjord (Fig. 1); such ages may therefore be present in other areas of the complexes.

The ages of the Krummedal supracrustal sequence concur with the late Palaeoproterozoic and the Mesoproterozoic age populations in the Hareelv Formation with peak ages of 1.65, 1.49 and 1.10 Ga (Fig. 7). The Mesoproterozoic age population with peak age of 1.37 Ga in the Hareelv Formation is only pronounced in some of the samples (Fig. 4), and the population is not evident in the Krummedal supracrustal sequence (Fig. 7). The late Palaeoproterozoic and late Mesoproterozoic age populations are dominant both in the Hareelv Formation and in the Krummedal supracrustal sequence. However,
The metamorphic rocks of the East Greenland Caledo-
nides comprise a complex series of lithologies and the
Krummedal supracrustal sequence is not representative
for them all.

The ages of the Caledonian granites that formed be-
tween 466 and 423 Ma in East Greenland (Leslie & Nut-
man 2003; Kalsbeek et al. 2008a; Rehnström 2010) are
in agreement with the minor age population with a peak
age of 0.43 Ga present in five of the samples from the
Hareelv Formation (Fig. 4).

The high contents of Fe and Mg in the garnets in the
Hareelv Formation suggest an origin from a felsic Al-rich
rock type that has been subjected to intermediate to high
metamorphic conditions. The presence of zircon, rutile,
leucoxene and apatite (Fig. 6) is also consistent with deri-
vation from felsic source rocks such as granites and gra-
nitic gneisses.

The proportion of mafic minerals relative to the re-
main ing heavy minerals is smaller in the Hareelv Forma-
tion than in the probable crystalline and metasedimenta-
ry source rocks in the East Greenland Caledonides. This
may be indicative of several cycles of sedimentation prior
to deposition in the Jameson Land Basin since mafic min-
erals break down easily during weathering and transport
(Morton & Hallsworth 1999). Furthermore, amphibole
and sillimanite largely dissolve during the first 3 km of
burial (Andò et al. 2012) and the studied Hareelv Forma-
tion was buried to about 2.8 km prior to Cenozoic uplift
(Green & Japsen 2018, this volume). Hence, the propor-
tions of the mechanically and chemically stable heavy
minerals, such as zircon and rutile, are high compared to
the other heavy minerals in the Hareelv Formation (Fig.
6). The negligible amount of ilmenite in the heavy-min-
eral suite of the sandstones probably indicates that leu-
coxene formed at the expense of ilmenite (Weibel 2003).

The interpretation of the non-mica heavy-mineral as-
semblage reported in Fig. 6 is based on rather few grains
because of the high content of mica minerals and authi-
genic heavy minerals (ankerite and pyrite) in the samples,
so the variations in the relative proportions between the
heavy minerals are not significant. It should be noted,
however, that a similar suite of heavy minerals is present
in all the samples (Fig. 6). The provenance signal of the
two finest-grained samples (ID 2, 3; Table 3) shows no
significant deviation from the remaining samples (Tables
1, 2, Figs 4–6) so it is not influenced by grain size. The
number of grains >710 µm in size is overestimated (Table
3) since it was not possible to disintegrate all individual
grains during crushing of the samples.

Reworking of older sediments

Zircon age data from the Neoproterozoic Eleonore Bay
Supergroup, including the Nathorst Land Group and the
Lyell Land Group, have peak ages of 1.75 and 1.05 Ga, re-
spectively (Fig. 7; Dhuime et al. 2007; Slama et al. 2011).
These ages are not prominent in the Hareelv Formation,
so only a minor amount of sediment can have been re-
worked from this part of the Eleonore Bay Supergroup
into the Jameson Land Basin during the Late Jurassic.
However, it should be noted that the seven samples from
the Eleonore Bay Supergroup are not considered repre-
sentative of the entire 14 km thick succession.

Devonian and Carboniferous sediments in the Kong
Oscar Fjord area (Fig. 1) have a wide range of age popula-
tions (Slama et al. 2011) that resemble those in the Hare-
elv Formation (Fig. 7). The relative dominance of the
various age peaks, however, is not similar for the different
sediments (this study and Slama et al. 2011): the Devo-
nian sediments contain fewer Archaean ages and more
early Neoproterozoic and Palaeozoic ages than the Hare-
elv Formation, whereas the Carboniferous sediments
contain fewer middle Palaeoproterozoic ages and more
Palaeozoic ages than the studied sandstones. However,
some degree of modification of the provenance signal

Fig. 6. Heavy-mineral contents of the Hareelv Formation excluding mica minerals and authigenic heavy minerals. The number of em-
ployed analyses (out of the total number of analyses of c. 1200 per
sample) is indicated by ‘n’.

- Leucoxene
- Rutile
- Zircon
- Garnet
- Apatite
- Epidote
- Olivine
- Mafic mineral
- Other

- MOL prov 6

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 1</td>
<td>7.41</td>
<td>22</td>
</tr>
<tr>
<td>ID 2</td>
<td>43.16</td>
<td>327</td>
</tr>
<tr>
<td>ID 3</td>
<td>69.78</td>
<td>148</td>
</tr>
<tr>
<td>ID 4</td>
<td>139.27</td>
<td>114</td>
</tr>
<tr>
<td>ID 5</td>
<td>181.53</td>
<td>40</td>
</tr>
<tr>
<td>ID 6</td>
<td>221.18</td>
<td>60</td>
</tr>
</tbody>
</table>
is likely to have occurred during erosion and transport. Furthermore, the paucity of the database that provides the comparison should be taken into account; the 8 km thick Devonian succession is covered by only three samples and the 2 km thick Carboniferous succession is represented by two samples. Thus, the Hareelv Formation may have been sourced by reworking of Devonian and/or Carboniferous sediments into the Jameson Land Basin. Ultimately, all the sediments originate from the same areas in the Caledonides, which must comprise a combination of the Archaean–Palaeoproterozoic crystalline complexes (with their late Archaean to middle Palaeoproterozoic zircon age spectrum), the Meso–Neoproterozoic metasediments (with their late Palaeoproterozoic to late Mesoproterozoic zircon age spectrum) and the intruded Caledonian granites (Fig. 7). These units are closely interrelated in the present-day exposed part of the East Greenland Caledonides (Fig. 1), where a thick section of the Krummedal supracrustal sequence must have been eroded to ex-

<table>
<thead>
<tr>
<th>Age (Ga)</th>
<th>Phanerozoic</th>
<th>Neoproterozoic</th>
<th>Mesoproterozoic</th>
<th>Palaeoproterozoic</th>
<th>Archaean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upper Jurassic sediments
- Hall Bredning Group
- Hareelv Formation
- 6 samples, n = 660
- ID 1–6, this study

Lower Jurassic sediments
- Neill Klinter Group
- 5 samples, n = 510
- Slama et al. 2011

Upper Carboniferous sediments
- Traill Ø Group
- 2 samples, n = 192
- Slama et al. 2011

Middle Devonian sediments
- Kap Kolthoff Group
- 3 samples, n = 314
- Slama et al. 2011

Neoproterozoic sediments
- Eleonore Bay Supergroup
 - Lyell Land Group
 - 3 samples, n = 339
 - Slama et al. 2011

Neoproterozoic sediments
- Eleonore Bay Supergroup
 - Nathorst Land Group
 - 4 samples, n = 59
 - Dhuime et al. 2007

Meso–Neoproterozoic metasediments
- Krummedal supracrustal sequence
- 3 samples, n = 62

Archaean–Palaeoproterozoic rocks
- Crystalline basement complexes
- 11 samples, n = 53
- Thrane 2002

Fig. 7. Zircon U–Pb ages of the analysed Upper Jurassic sandstones (A) compared to older sediments and basement complexes (B–H; Watt et al. 2000; Thrane 2002; Leslie & Nutman 2003; Dhuime et al. 2007; Slama et al. 2011). Ages with <10% discordance are employed and they are plotted using kernel density estimation (Vermeesch 2012). The locations of the samples are shown in Fig. 1.
pose the underlying crystalline basement (Higgins et al. 2004).

The Liverpool Land High was uplifted during the Early Jurassic and supplied sediment to the Jameson Land Basin (Surlyk 2003). The dominant age populations with peak ages of 1.62 and 0.44 Ga found in Lower Jurassic sediments in the eastern Jameson Land Basin (Fig. 7; Slama et al. 2011) correspond to ages present in Liverpool Land in the Eclogite Terrane and in Caledonian granitoid rocks, respectively (Augland et al. 2011, 2012). This distinctive age signature is not present in the Hareelv Formation, so the latter cannot have received material from Liverpool Land or its derived sediments. This is in accordance with the gradual Jurassic onlap onto Liverpool Land (Surlyk 2003) indicating that it was no longer a source area in Late Jurassic times.

Sediment transport

It is plausible that the sediments in the Hareelv Formation and the associated shelf-edge systems were derived partly or fully from reworking of Palaeozoic sediments, as described above. In that case, a contribution may have come from immediately north-west of the basin, where Carboniferous sediments are exposed today (Fig. 1), and/or from farther south where these strata were probably outcropping in Jurassic times. The Palaeozoic sediments were onlapped during the Middle Jurassic, but increased faulting associated with the rifting that began in the Middle Jurassic is known to have led to local erosion of fault crests during the Late Jurassic (Surlyk 2003). Such faulting may also have occurred inland (west) of the Jameson Land Basin, thereby resulting in reworking of Palaeozoic sediments.

Small differences exist between the zircon age distributions of the Hareelv Formation (Table 1; Fig. 5), but none of the analysed samples was found to be statistically dissimilar according to the performed K-S tests (Table 2). This suggests a consistent and persistent transport path for the sands deposited in this part of the Jameson Land Basin in the Late Jurassic.

The results of the provenance analysis of the Hareelv Formation may also be used to characterise the shelf-edge sediments that collapsed and subsequently were redeposited by gravity flows (Fig. 3). The feeding shelf-edge sands are represented by the proximal facies of the Olymen Formation (or younger equivalents) during deposition of the Katedralen Member and subsequently by the Raukelv Formation during deposition of the Sjæl-

landselv Member (Surlyk 2003; Surlyk et al. 2007; Bjørager et al. 2018b, this volume). The Olymen Formation (Zeus Member) and the Raukelv Formation (Fig. 2) are both interpreted to have been deposited during relative lowstands in the region, but the source terranes that supplied sediment to the northern shelf edge of the Jameson Land Basin may not have been entirely the same during these two time intervals since there are some distinctive differences between the samples from the Katedralen and Sjællandselv Members. The sandstone from the Sjællandselv Member (ID 1) has a higher heavy-mineral content (Table 3) and a higher proportion of Archaean zircon grains (Table 1) than the sandstones from the Katedralen Member (ID 2–6). The Sjællandselv Member sample has a peak age at 1.73 Ga, but lacks the pronounced peak age at 1.66–1.64 Ga in the remaining samples (Fig. 4), and sandstones from the Sjællandselv Member are coarser-grained than the Katedralen Member sandstones (Surlyk 2003; Bjørager et al. 2018a, this volume). Furthermore, the Sjællandselv Member sample contains 4% rock fragments compared to only 0–1% in the samples from the Katedralen Member (Olivarius et al. 2018, this volume). This could indicate rejuvenation of the topography during the Volgian such that the Raukelv Formation received some of its sediment from more proximal sources in comparison to the previous shelf-edge sands. This is in accordance with the Late Jurassic rifting that caused block faulting and thereby created local sediment sources through erosion of tilted footwall crests (Surlyk 2003).

Conclusions

The large range of zircon U–Pb ages in the Upper Jurassic Hareelv Formation resembles the zircon age spectrum in the Caledonides of East and North-East Greenland. The heavy-mineral suite and garnet composition in the sandstones indicate derivation from felsic rocks. Archaean–Palaeoproterozoic crystalline complexes, Mesoproterozoic metamorphic rocks and Caledonian migmatites and granites are considered to represent the original source of the material.

Some or all of the material may, however, have undergone several sediment cycles before deposition in the Jameson Land Basin in the Late Jurassic. Sediment supply to the Hareelv Formation from reworking of Devonian and Carboniferous sediments is plausible since the preserved parts of these successions contain corresponding age populations. However, it should be emphasised that the database for comparison is limited.
The provenance signature is a reflection of the area exposed to lowstand erosion during the accumulation of the southwards prograding shelf-edge deltas that subsequently fed the gravity flows of the Hareelv Formation. The provenance signature is rather uniform in the Oxfordian–Kimmeridgian Katedralen Member, but there are a number of indications of a shorter sediment transport distance for the sands of the early Volgian Sjælland-selv Member, potentially reflecting rejuvenation of the topography during rifting.

Supplementary data to this article can be found online at: www.geus.dk/Bulletin42

Acknowledgements

John Boserup, Anders Pilgaard, Fiorella F. Aguilera, Mojagan Alaei, Jørgen Kystol and Ingerlise Nørgaard are thanked for sampling and analysis. Dirk Frei, Niels Henriksen, Kristine Thrane and Peter Appel provided valuable advice and Jette Halskov kindly did the artwork. The referees, Jiri Slama and Martin Sønderholm, are thanked for insightful comments that significantly improved the manuscript.

References

