Review of Survey activities 2008

Edited by
Ole Bennike, Adam A. Garde and W. Stuart Watt
Geological Survey of Denmark and Greenland Bulletin 17

Keywords
Geological Survey of Denmark and Greenland, survey organisations, current research, Denmark, Greenland.

Cover photographs from left to right
1. Inspection of cores in Jameson Land, East Greenland. Photo: John Boserup.
2. Field work in West Greenland. Photo: Dennis Schlatter.
3. Investigations and sampling of an outcrop at Conde, Bahia, Brazil. Photo: Peter Jaspers.
4. Field experiments with remediation of contaminated soil in Vadsby, west of Copenhagen. Photo: Knud Erik S. Klint.

Frontispiece: facing page
Visit at the automatic weather station 'Lower Nuuk' on 30 July 2008 for data retrieval and maintenance. The station is located on the glacier Qamaaarsuup Serma near the margin of the Greenland ice sheet, east of Godthabsfjorden (64°29' N, 49°31' W). It collects weather information and data about the local ablation and was established in 2007 as part of the Promice project (www.promice.org). Photo: Søren Nielsen.

Chief editor of this series: Adam A. Garde
Editorial board of this series: John A. Korstgård, Department of Earth Sciences, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen
Scientific editors: Ole Bennike, Adam A. Garde and W. Stuart Watt
Editorial secretaries: Jane Holst and Esben W. Glendal

References (DK = Denmark; numbers refer to first page of reviewed article): Anonymous (29, 29, 35, 45, 77, 81); Lars Christiansen, DK (41); Finn Dallhoff, DK (13); Gregers Dam, DK (53); Edward F. Duke, USA (69); Ida Fabricius, DK (17); Henrik Friis, DK (25); Marie-Joëlle Guillard, S (57); Ole Graversen, DK (81); Karen Hangby, USA (61); Bent Hasholt, DK (45); Jens Harskov, N (9); Ole Humlum, N (74); Paul Martin Holm, DK (61); Jens Konnenrup-Madsen, DK (65); John A. Korstgård, DK (57); Nicolaj-Brog Larsen, S (53); Poul-Henrik Larsen, DK (53); Christoph Mayer, G (74); Florence Mazier, S (57); Klaus Moesgård, DK (9); John Myers, Australia (49); Allan Aasbjerg Nielsen, DK (69); Henrik Olsen, DK (41); Graham Pearson, UK (65); Asger Ken Pedersen, DK (57); Gunver Kærup Pedersen, DK (21); Jan Audun Rasmussen, DK (121); Martin Sønderholm, DK (25); Morten Gjetting Stage, DK (13); Ole V. Vebæk, DK (17).

Illustrations: Stefan Solberg, with contributions from Benny M. Schark

Layout and graphic production: Henrik Kringe Pedersen and Annabelh Andersen
Printers: Schultz Grafisk, Albertslund, Denmark
Final versions approved: 25 May 2009
Printed: 8 July 2009

ISSN 1603-9769 (Review of Survey activities)
ISSN 1604-8156 (Geological Survey of Denmark and Greenland Bulletin)

Citation of the name of this series
It is recommended that the name of this series is cited in full, viz. Geological Survey of Denmark and Greenland Bulletin.
If abbreviation of this volume is necessary, the following form is suggested: Geol. Surv. Den. Green. Bull. 17, 84 pp.

Available from
Geological Survey of Denmark and Greenland (GEUS)
Øster Voldgade 10, DK-1350 Copenhagen K, Denmark.
Phone: +45 38 14 20 00, fax: +45 38 14 20 50, e-mail: geus@geus.dk

© De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS), 2009
For the full text of the GEUS copyright clause, please refer to www.geus.dk/publications/bull
GEUS working areas 2008. Orange areas are covered in this volume.

For further information on other working areas please refer to our website: www.geus.dk/international

7 Review of Survey activities 2008
F.G. Christiansen

9 Earthquake in southern Sweden wakes up Denmark on 16 December 2008
P.H. Voss, T.B. Larsen, L. Ottemöller and S. Gregersen

13 The potential for large-scale, subsurface geological CO2 storage in Denmark
P. Frykman, L.H. Nielsen, T. Vangkilde-Pedersen and K.L. Anthonsen

17 Increased oil recovery from Halldan chalk by flooding with CO2-enriched water: a laboratory experiment
D. Olsen

21 Ladinian palynofloras in the Norwegian–Danish Basin: a regional marker reflecting a climate change
S. Lindström, H. Vosgerau, S. Peasecki, L.H. Nielsen, K. Dybkjær and M. Erlström

25 Fingerprinting sediments along the west coast of Jylland: interpreting provenance data
C. Knudsen, T. Kokfelt, T. Aagaard, J. Bartholdy and M. Pejrup

29 Structural development of Maglevandsfald: a key to understanding the glaciotectonic architecture of Møns Klint, SE Denmark
S.A.S. Pedersen and P. Gravesen

33 Fracture valleys in central Jylland – a neotectonic feature
P.R. Jakobsen and S.A.S. Pedersen

37 Soil erosion and land-use change during the last six millennia recorded in lake sediments of Gudme Sø, Fyn, Denmark
P. Rasmussen and J. Olsen
41 Geophysical methods and data administration in Danish groundwater mapping
I. Møller, V.H. Søndergaard and F. Jørgensen

45 Water budget of Skærsø, a lake in south-east Jylland, Denmark: exchange between groundwater and lake water
B. Nilsson, P. Engesgaard, J. Kidmose, S. Karan, M.C. Looms and M.C.S. Frandsen

49 Geological observations in the southern West Greenland basement from Ameralik to Frederikshåb Isblink in 2008
N. Keulen, A. Scherstén, J.C. Schumacher, T. Næraa and B.F. Windley

53 Shallow core drilling and petroleum geology related field work in East and North-East Greenland 2008
J.A. Bojesen-Koefoed, M. Bjerager and S. Piaserci

57 The bedrock geology under the Inland Ice: the next major challenge for Greenland mapping
P.R. Dawes

61 Developing a 3-D model for the Skaergaard intrusion in East Greenland: constraints on structure, mineralisation and petrogenetic models
T.F.D. Nielsen, S.D. Olsen and B.M. Stensgaard

65 Diamonds and lithospheric mantle properties in the Neoproterozoic igneous province of southern West Greenland
A. Steenfelt, S.M. Jensen, T.F.D. Nielsen, K.K. Sand and K. Secher

69 Using spectral mixture analysis of hyperspectral remote sensing data to map lithology of the Sarfartoq carbonatite complex, southern West Greenland
E. Bedini and T. Tukiainen

73 Glaciological investigations at the Malmbjerg mining prospect, central East Greenland
M. Citterio, R. Mottram, S.H. Larsen and A. Ahlbrom

77 Holocene climate variability in southern Greenland: results from the Galathea 3 expedition
N. Nørgaard-Pedersen, N. Mikkelsen, M.D. Poulsen and A.S. Simonsen

81 Post-rift landscape development of north-east Brazil
J.M. Bonow, P. Japsen, P.F. Green, P.R. Cobbold, A.J. Pedreira, R. Lilleveit and D. Girossi
Review of Survey activities 2008

Flemming G. Christiansen
Deputy Director

Following a number of years with major changes of the scientific environment in Denmark and also within the management of the Geological Survey of Denmark and Greenland (GEUS), 2008 was a year of stability and consolidation, a situation that will hopefully continue. Many new projects have been initiated and many previous projects have been completed at a time with strong focus on GEUS’ activities politically, commercially and from the media.

This sixth annual issue of Review of Survey activities describes selected projects that GEUS and its partners carry out in Denmark, Greenland and internationally. Together with the previous five published issues (also available at www.geus.dk), it provides a good overview of the Survey’s many different types of research and advisory activities. It contains a total of 19 four-page papers: ten on Denmark, eight on Greenland and one on international work.

Geology was on the lips of most of the Danish population an early morning in December 2008 when one of the strongest earthquakes recorded in Scandinavia woke up hundreds of thousands of people in southern Sweden and on Sjælland. One paper in this issue describes the background and details of the earthquake, including input from the public that contacted GEUS through its website.

Reduction of the emission of CO2 is high on the political agenda in Denmark and internationally. One of the possibilities to reduce CO2 emission from large point sources is to use carbon capture and storage (CCS). The Danish subsurface has a high potential to store CO2, and structures such as the Vedsted structure in northern Jylland could be among the first dozen storage facilities utilised in Europe, and thereby become a key area for detailed research and monitoring for many years to come. The background for CCS and geological possibilities in Denmark are described in one paper.

Oil and gas exploration and production are still very important for the economy of Denmark, and GEUS has a strong emphasis on research within this field. Two papers concentrate on petroleum geology. One of them is based on laboratory flooding experiments and describes the possibility of increasing oil recovery from reservoirs in chalk using injection of CO2-enriched water; the other provides a detailed biostratigraphic correlation of the Late Triassic succession in the Norwegian–Danish Basin.

Most surface features in Denmark have been formed by glacial and coastal processes during the Quaternary. Several papers in this issue describe such processes; one of them demonstrates the use of sophisticated analytical techniques such as computer-controlled, scanning electron microscopy of heavy minerals and laser ablation, inductively coupled mass spectrometry of zircon grains to describe erosion and re-deposition of sand along the west coast of Jylland. The structural development of the famous Møns Klint geosite is dealt with in one paper, and the occurrence of neotectonic fracture valleys in central Jylland in another. A third paper describes soil erosion and land use change during the last six millennia as recorded in lake sediments from Gudme Sø on Fyn.

Groundwater mapping and management have a very high priority in Denmark. One paper describes the many different geophysical methods that are used in hydrogeological mapping, as well as the administration of the geophysical data that are archived in a major database hosted at GEUS. Another paper describes the exchange between lake water and groundwater of lake Skærsø in Jylland.

In 2008 there was a high level of field activities in Greenland. The two largest campaigns in southern West Greenland and eastern Greenland are described in individual papers. The West Greenland field work was a follow-up on earlier projects focused on updating previous maps and thereby creating a better understanding of the potential distribution of mineral occurrences. The field work in eastern Greenland is the start of a major oil industry sponsored programme that has been launched to support and promote petroleum exploration within the coming five-year period. It includes shallow core drilling.

One paper addresses a question often raised by scientists and explorers: what is the bedrock geology under the Inland Ice that covers 81% of the total area of Greenland? Available
geological and geophysical data are shortly reviewed and ideas for future studies presented. Another paper introduces a 3-D modelling of one of the best studied intrusions in the world, the Paleocene Skaergaard intrusion in East Greenland. Identification of significant platinum group and gold occurrences in this intrusion has lead to detailed investigations and exploration drilling over many years. The last decade of diamond exploration in West Greenland has provided a wealth of data on the dykes of kimberlite and ultramafic lamprophyres that may host diamonds. One paper summarises new data on petrology and age distribution of the dykes that have important implications for future diamond exploration. In a large country like Greenland, use of remote sensing data is important and cost-effective in mapping and exploration. One paper presents an analysis of hyperspectral data from the Sarfartoq carbonatite complex in West Greenland. The paper illustrates that such data can be applied to mapping of individual rock types.

The most recent processes and climate development in Greenland are described in two papers of which one stresses the importance of applied glaciology for the exploitation of the Malmbjerg molybdenum deposit in East Greenland, because the site of a possible future mine is located between two glaciers. Future access to the mining site and removal of ore and waste rock are highly dependent on the movement of the glaciers. The second paper addresses Holocene climate variation and marine history in South Greenland, based on a number of samples collected in Bredfjord and Narsaq Sund during the Galathea 3 expedition.

A final paper on landscape development in Brazil employs the same methods of landscape mapping and apatite fission track analysis that were used to study the uplift history of the margins of Greenland and Scandinavia.
A moderately strong earthquake struck southern Sweden 5 km south-west of the town of Sjöbo, 60 km east of Malmö, in the early morning at 6:20 a.m. local time on 16 December 2008. The epicentre was located in Skåne, a region that is known for its extremely low seismicity, and its location was determined to be 55.5°N and 13.6°E with an uncertainty of about 6 km. A depth of 9 km with an uncertainty of 3 km was obtained from teleseismic observations at the Yellowknife seismic array, USA. Since waveform data from the Swedish national seismic network are not yet available, depth estimation using local stations has so far not been attempted. During the period 1970–2008, only three small earthquakes were detected in the region; the largest measured 2.8 on the local Richter scale. To our knowledge none of these previous earthquakes were felt by people. The historical archives dating back to 1375 show that 14 other earthquakes have been felt in the area. The largest of these, recorded in 1894, was felt over an area of 7300 km² and had an epicentre 50 km east of the 16 December 2008 earthquake (Scandinavian Earthquake Archive 2003). The activity in southern Sweden is similar to that of northern Sjælland and north-western Jylland, and confirms the low seismicity of the region (Gregersen et al. 1991).

Even though the earthquake was unusual, the event was not totally unexpected. Northern Europe is under constant pressure from the mid-Atlantic Ridge, and the resulting stress is released in small to moderate size earthquakes. The local stress field is further modified by postglacial rebound. Earthquakes in Denmark and southern Sweden occur where there are weaknesses or faults in the subsurface. In some cases the earthquakes occur where there are no mapped faults (Gregersen et al. 1996).

Shaking from the earthquake was felt widely in Denmark. Strong shaking and low-frequency earthquake sounds frightened many people and caused them to abruptly leave their houses. Authorities such as the police and the Geological Survey of Denmark and Greenland (GEUS) were flooded with phone calls and e-mails from concerned citizens. Fortunately the earthquake did not cause any real damage, and no one was in danger at any time.

Macroseismic effects in Denmark

The basic physical earthquake parameters are determined from instrumental recordings. However, the effects of the earthquake on people, buildings, and nature require human inter-
Immediately following the earthquake, GEUS requested input from the public through the news media and our own web page. Our earthquake questionnaire was placed on www.geus.dk and a paper copy was mailed to those who had no internet access or who felt uncomfortable about reporting electronically. After a few days, GEUS had received more than 3000 earthquake reports (Fig. 1), and after a month the number exceeded 4000 reports. This is a large increase compared to the last widely felt earthquake in Denmark in 2001, where we received little more than 400 reports (Larsen et al. 2008) and the one in 1985 in Kattegat, which was almost as large as the 16 December 2008 earthquake, where we received a total of around 500 reports from Sweden and Denmark.

In Denmark alone the area where the earthquake was felt covers about 50 000 km² (Fig. 1). Earthquakes in Scandinavia are felt over much larger areas than in California, where C.F. Richter worked when he invented the Richter magnitude scale. Thus the attenuation in Scandinavia is lower than that in California. A comparison of local observations of 25 earthquakes in different regions and their magnitude suggests that the affected area this time will exceed 100 000 km² (Fig. 2).

Reports from the population are an important tool to assess the impact of an earthquake and to identify locations that are particularly vulnerable to ground shaking. This is still of great interest as earthquakes can be compared to historic events predating the era of instrumental recording. This information is used in seismic hazard studies, for example in connection with large construction projects. The GEUS questionnaire comprises the address of the observer, information about the building in which the observer was located and detailed information about shaking and other effects caused by the earthquake. Shaking is strongly amplified in tall buildings, and the European macroseismic scale (Grünthal et al. 1998) recommends that shaking observations above the 5th floor are not taken into account when determining the intensity of an earthquake. A detailed study of the 4000 current reports has not yet been completed, but the reports will provide valuable shake information especially for Sjælland.

In many locations the earthquake was felt strongly. Some examples, with locations shown on Fig. 3, are: Copenhagen: “walls, closet and bed were shaking”, Gilleleje: “the chair I was sitting in was shaking”, Humlebæk: “it was as if the bed was shaken – it felt very terrifying”, Ålborg: “it felt as if someone was shaking my bed gently”, Kettinge: “as when a large truck is just outside”.

Some reports claim that the earthquake caused a road in Helsingør to crack. Inspection of the road confirms the presence of cracks, but it is not obvious that the cracks opened during the earthquake. New asphalt was added to the road a year earlier, and the small cracks are located in the weak zone where new asphalt overlaps with old. The road is exposed to heavy traffic and the cracks could have opened at any time. They do not look any different from other asphalt cracks. The European-Mediterranean Seismological Centre has also received information (a photo) of cracked asphalt in Sweden, but it has not been confirmed that these cracks formed during the earthquake.
Earthquake magnitude

Determining the magnitude of an earthquake is not straightforward. Many different definitions of magnitude are in use at seismological data centers around the world. They measure fundamentally different parameters in the seismograms, all with the intention to reproduce C.F. Richter’s original magnitude measure from 1935 (Richter 1935), which is in widespread use for public information and in engineering in earthquake regions. The earthquake hazards program at the United States Geological Survey (USGS) calculates up to six different magnitude values for each registered earthquake. At GEUS, two different magnitudes are calculated: our own computation of local magnitude (ML), which should give the classical Richter number (Richter 1935) for local earthquakes, and the moment magnitude (Hanks & Kanamori 1979), which reflects the size of the fault area and the slip during the earthquake.

At GEUS, the ML is calculated from the maximum amplitude of the earthquake signal on the vertical component of the seismograph (usually the (surface) Lg wave) taking into account the distance between the earthquake and the seismograph station. When the Lg wave is observed at several seismographs, we calculate the ML as the average of the separate ML values. It requires little data to calculate and it can be calculated shortly after the earthquake. When the data quality is low, as is often the case with weak, local earthquakes, the ML is the only magnitude that can be calculated. The calculation of ML builds on experience of how effectively the shaking propagates in the area.

The variations in the ML value calculated at different seismograph stations can be large. Following the earthquake on 16 December 2008, several European agencies reported ML values for their stations. The values ranged from 4.6 to 5.8 even though the local corrections are supposed to ensure similar values for all stations (Fig. 4). Ideally the ML values estimated at seismographs map the energy released in different directions from the earthquake, but the uncertainty in the correction of damping is large, so the pattern is only determined with some uncertainty. At GEUS, a ML value of 4.8 was calculated, identical to the ML value reported by the USGS. University of Bergen reported 4.7, University of Helsinki 4.9 and Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum 5.4.

The moment magnitude is based on the seismic moment of the earthquake, a physical parameter that is proportional to the area of the fault multiplied by its slip. The moment can be determined from seismological measurements, and in special cases from geodetic measurements. A large number of clear signals on seismographs surrounding the epicentre are needed to obtain a well constrained moment magnitude, using moment tensor inversion. The moment magnitude is determined by searching for the earthquake source parameters that produce synthetic seismograms that have the best possible fit to the observed seismograms. We have determined the moment tensor and a moment magnitude of 4.2 using the method by Dreger (2003). University of Uppsala, USGS and Istituto Nazionale di Geofisica e Vulcanologia reported a moment magnitude of 4.3.

Fault plane solutions determined in this preliminary study and by others all show a strike-slip movement with a normal component. The corresponding compressional stress field is orientated in a NNW–SSE direction as shown by the focal mechanisms (Fig. 4).
Tectonic setting

The epicentre is located in the Sorgenfrei–Tornquist Zone, which is part of a major transition zone in Europe between (1) the old Precambrian shield of Fennoscandia and eastern Europe and (2) the younger lithosphere of central Europe (Pharaoh 1999). The earthquake activity in the Sorgenfrei–Tornquist Zone is limited, with Kattegat being the most active region. The most active area in Denmark is from north-western Jylland into Skagerrak (Gregersen et al. 1998). Recent studies show that many of the earthquakes cannot be referred to known faults in the Sorgenfrei–Tornquist Zone (Gregersen et al. 1996). This is the case even though the uncertainties in the earthquake locations are large.

Faults in the top Pre-Zechstein rocks have been mapped in the area where the earthquake occurred (Fig. 1). However, the location uncertainty (6 km) means that one cannot link the 16 December 2008 earthquake to a known fault. This is a general problem as small earthquakes occur at depth where as faults are mostly mapped near the surface.

A re-analysis of the data recorded by the Danish seismological network shows that no foreshocks or aftershocks were observed in the months before or after the 16 December earthquake. Seismograms of the earthquake are shown in Fig. 5.

Concluding remarks

To feel an earthquake in Denmark is rare but not unlikely. Earthquakes felt in Denmark are generally small and felt in north-western Jylland or northern Sjælland (Gregersen et al. 1998; Larsen et al. 2008). Large earthquakes with epicentres located outside Denmark have also been felt in Denmark, like the earthquakes in Lisbon in 1755, Oslo in 1904 and Kalingrad in 2004 (Gregersen et al. 2007). The perceptibility area in Denmark of the 16 December 2008 earthquake is comparable to the perceptibility area of the Holbæk earthquake in 2001 (Larsen et al. 2008), where the earthquake was felt mostly in northern Sjælland. Also, the area is not much different from that shaking in 1930 by a small earthquake in Øresund. The shaking from the Oslo earthquake in 1904 was felt in the north-eastern part of Denmark. The Kalingrad earthquake in 2004 was felt by many in Copenhagen and in northern Sjælland, but only marginally in the rest of Denmark.

The coincidence of the perceptibility areas must be included in future evaluations of the earthquake hazard of Denmark. Denmark is located in an area of low earthquake hazard (Giardini et al. 2003) and the danger of any damage or injury caused by an earthquake is insignificant compared to other hazards.

Acknowledgements

University of Bergen, University of Helsinki, University of Uppsala, Deutsches GeoForschungsZentrum in Potsdam and UNOS provided data for this study.

References

Authors’ addresses

P.H.V., T.B.L. & S.G., Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: pv@geus.dk

E-mail: L.O., British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK.
Carbon capture and storage (CCS) is increasingly considered to be a tool that can significantly reduce the emission of CO2. It is viewed as a technology that can contribute to a substantial, global reduction of emitted CO2 within the timeframe that seems available for mitigating the effects of present and continued emission. In order to develop the CCS method the European Union (EU) has supported research programmes for more than a decade, which focus on capture techniques, transport and geological storage. The results of the numerous research projects on geological storage are summarised in a comprehensive best practice manual outlining guidelines for storage in saline aquifers (Chadwick et al. 2008). A detailed directive for geological storage is under implementation (European Commission 2009), and the EU has furthermore established a programme for supporting the development of more than ten large-scale demonstration plants throughout Europe. Geological investigations show that suitable storage sites are present in most European countries. In Denmark initial investigations conducted by the Geological Survey of Denmark and Greenland and private companies indicate that there is significant storage potential at several locations in the subsurface.

The Danish perspective in storage capacity

The ten largest point sources of CO2 emission in Denmark account for 21 mega-tonnes per year (Mt/year). From preliminary investigations of the Danish subsurface the CO2 storage capacity in selected subsurface structures is estimated to 2500 Mt (GeoCapacity 2009a). This corresponds to more than 100 years of storage from the ten largest emission point sources. The critical parameters of this analysis are the size of the structure, thickness, continuity and quality of the reservoir and the amount of formation water that may be displaced by the injected CO2. The estimate is calculated assuming a surrounding aquifer volume displacement of formation water, which is limited to 50 times the trap volume (GeoCapacity 2009b).

These estimates of storage capacity are uncertain and have not yet been tested in real physical storage operation. Therefore it is difficult to evaluate to what degree the volume calculations are realistic. When a specific structure is selected for storage, a number of investigative steps are necessary, including acquisition and interpretation of new 2-D or 3-D seismic data, drilling of new wells, geological and reservoir modelling and flow simulation studies. For each step of incorporating new geological data, the site model of the reservoir is updated in the process of maturing the structure towards a storage site. This stepwise approach to site characterisation gradually leads to a research-based and relatively certain capacity estimate and an evaluation of the safety and behaviour of the site under simulated conditions, including the uncertainties of the estimates.

Assessment of geological and environmental risks can be carried out at various stages in the process. Similarly, establishment of baseline studies and monitoring strategies need to be considered along with the progress of the characterisation.

Fig. 1. Map of Denmark showing the most important point sources of CO2 emission and prospective structures for geological storage of CO2.
tion of the storage site in order to make sure that the necessary background information is obtained before storage is initiated. In order to be reliable and operational, the baseline studies should preferably focus on measurement of conditions and properties that are stable and only show limited seasonal variations. Such studies may include groundwater-flow models and groundwater chemistry, pore water and pore gas analyses from deep wells, surface topography and natural seismicity.

A site study

Site investigations have recently been initiated of the Vedsted structure by Vattenfall A/S, with the intention of using the structure for storage of CO2 from a nearby coal-fired power plant in Ålborg (Fig. 1; Sørensen et al. 2009). Existing data from oil exploration activities in the 1950s include one well in the centre of the structure and sparse 2-D seismic line data. The main target layer is the Triassic–Jurassic Gassum Formation at around 1800 m depth. The formation is widely distributed in the Danish Basin and has good reservoir properties (Fig. 2). It is currently used for storage of natural gas in the Stenlille structure on Sjælland and for geothermal energy in the Thisted area in northern Jylland.

Detailed sedimentological and sequence stratigraphic interpretations and correlations of the well logs and cores have established a robust stratigraphic framework for the Upper Triassic – Jurassic succession (Nielsen 2003). This framework forms the basis for the interpretation of the Vedsted-1 well section as well as predictions regarding the lithology of the potential reservoirs and seals in the Vedsted area (Fig. 3). The process has also underlined the necessity of acquisition of new data and more detailed modelling at several different scales.

At site scale, the optimal positioning of injection wells, as well as injectivity and capacity can be modelled and analysed, and the coupling between the operation of the power plant and the capture facility can be studied. The specific geological properties of the storage reservoir layers have consequences for the propagation and distribution of the injected CO2 and for the storage mechanisms in the specific reservoir. Most reservoirs show both vertical and horizontal heterogeneities that will influence the distribution of the CO2.

The preliminary reservoir model for the Vedsted structure has been investigated by simulating an injection well on its south-eastern flank and using injection rates realistic for power-plant supply rates (Frykman et al. 2009). After ten years of constant injection, the CO2 distribution is as seen in Fig. 4, which clearly shows the subdivision of the migrating front into several sub-layers due to intraformational sealing layers with low permeability that also have high capillary entry pressures. The layering in the model has maximum lateral continuity, which probably overestimates the segregation to be found in real cases, but any intra-reservoir sealing layers will have such an effect on the distribution. Since this filling pattern influences the capacity, it is necessary to analyse further the properties and the continuity of the intraformational sealing layers.

CO2 can be trapped by several mechanisms, including structural trapping under an overlying sealing formation, dissolution of CO2 in formation water, capillary trapping in the pore network and mineral trapping by reactions between CO2 and mineral phases in the reservoir rock. These trapping mechanisms work on different scales both in space and time and need to be studied by designing appropriate models and experiments.

For large-scale injection of CO2 displacing saline porewater, the propagation of the pressure field during injection outside the immediate site area is of interest. Modelling of this pressure distribution will serve to predict the amount of overpressure building up locally within the storage site, and can be used to suggest possible means of management.
The scale of the challenge and future perspective

The first detailed pan-European assessment of CO₂ storage capacity in the framework of the EU research project Geo-Capacity has resulted in a geographic information system (GIS) database of CO₂ emissions, storage capacity estimates and geological information. The database includes information on reservoirs with a total storage capacity of 360 000 Mt CO₂, with 326 000 Mt in deep saline aquifers, 32 000 Mt in depleted hydrocarbon fields and 2000 Mt in unmineable coal beds: 116 000 Mt are onshore, and 244 000 Mt offshore (GeoCapacity 2009a). Some of the estimated storage capacity is associated with structural traps, but a very large part is in regional deep saline aquifers without identified specific traps. Almost 200 000 Mt of the total storage capacity in the database are located offshore Norway. These estimates date back to 2003 and have not been updated within the GeoCapacity project. An attempt to provide a more cautious and conservative European estimate has yielded a storage capacity of 117 000 Mt with 96 000 Mt in deep saline aquifers, 20 000 Mt in depleted hydrocarbon fields and 1000 Mt in coal beds, and with approximately 25% located offshore Norway. This must be compared to a total of 2000 Mt of CO₂ emission from large point sources, i.e. point sources emitting more than 0.1 Mt/year within Europe.

In order to illustrate the scale of the technology and infrastructure that has to be established if CCS is to become an active industry, we can look at the amount of CO₂ produced by the ten largest point sources in Denmark. There are 43 large point sources emitting 28 Mt CO₂/year, the ten largest of which are responsible for 21 Mt/year. At surface condi-

Fig. 3. SW–NE-oriented cross-section across the Danish Basin, the Sorgenfrei–Tornquist Zone and the Skagerrak–Kattegat Platform (red line on the index map). The panel shows the lower part of the Gassum reservoir which comprises fluvial, estuarine and shallow-marine deposits interbedded with offshore mudstones and some lacustrine mudstones. Shoreline fluctuations have caused intermixing of these different facies types and given rise to pronounced vertical variability. Information from the four wells in the section about sedimentary facies have been interpreted and correlated into a sequence-stratigraphic framework. At a local site, this framework must be confirmed from detailed investigations of material from new wells drilled, and supplemented with new seismic data. Modified from Nielsen (2005).
tions this corresponds to 11 billion (11 × 10^9) m³ CO₂ gas. The annual production of natural gas from the Danish part of the North Sea amounts to 10 billion (10 × 10^9) m³ (Danish Energy Agency 2008), which is transported in pipelines and tankers and processed at plants and refineries. The comparable size of the potential volume of CO₂, to be moved around at surface and injected into the subsurface (although compressed to smaller volumes at depth), points to the large scale at which a CCS-related processing and transporting industry has to be established.

Concluding remarks

The CCS activities described here related to large-scale storage operations will involve significant physical resources and manpower. Fortunately, the work with storage-related items does not have to begin from first principles, because much of the experience already exists in the oil and gas industry, which can provide methods and tools for immediate use. The skills of geoscientists and engineers are needed in the investigation and characterisation of the sites and the subsurface conditions for storage of CO₂ and a whole new infrastructure and industry may be established. Geoscience and ge-engineering will play a major role in the analysis of the geological foundation, the assessment of site performance, and will be critical in securing the safety of the operations.

Initial investigations of the Danish subsurface indicate that suitable structural traps with a significant storage potential are present at several locations, and that the structures can accommodate the CO₂ produced from several or most of the large Danish point sources. Thus, geological storage of CO₂ may contribute considerably to the reduction of the Danish CO₂ emission, if we can be assured about safety issues, and if political and public acceptance can be obtained.

References

Authors’ address

Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark E-mail: pfr@geus.dk

Fig. 4. Vertical NW–SE section in the Gassum reservoir model through the injection well, showing CO₂ saturation (free gas-phase supercritical CO₂) after 10 years of injection. Although the model is constructed in a fairly coarse grid, the inter-reservoir sealing layers are clearly reflected and influence the spatial distribution of the injected CO₂. The sedimentary layering causes filling of the individual layers of porous sand with the injected CO₂ whereas the interbedded mudstone layers with much lower reservoir quality are not filled and also limit the vertical movement of CO₂. Model thickness 300 m, length 4800 m, vertical exaggeration 5 times. (Modified from Frykman et al. 2008).
Injection of CO₂ is a method that may increase the recovery of oil from Danish chalk reservoirs in the North Sea. The method is used elsewhere, particularly in North America, but has so far not been used in the North Sea and has nowhere been used for chalk reservoirs, and the performance of the method when used for North Sea chalk is therefore uncertain. A laboratory flooding experiment was conducted at the Geological Survey of Denmark and Greenland on a sample from the Nana-1X well of the Halfdan oil field in the Danish North Sea in order to test the efficiency of CO₂-enriched water to produce additional oil from chalk. The sample is a low-permeability chalk from the Ekofisk Formation and represents rocks that are marginal to the Halfdan reservoir in an economical sense.

Outline of the experiment

For the flooding experiment, four 1.5 inch core plug samples were assembled to form a composite sample with a total length of 28 cm and a pore volume of 92 ml. The flooding experiment was conducted at a fluid pressure of 282 bars, a hydrostatic confining pressure of 429 bars, and a temperature of 85°C. These are conditions similar to those of the Halfdan reservoir. First the oil content, S_o, of the sample was adjusted to 77.7% of the pore volume (PV), the remaining pore fluid being simulated formation water. The sample was then brought to reservoir conditions, aged for three weeks to restore the wettability to reservoir conditions and then flooded with simulated formation water until oil production from the sample had ceased. After changing the flooding fluid to CO₂-enriched water, flooding was resumed and sustained until oil production had declined to a negligible level. Flooding was then stopped, the rig was cooled and depressurised, and the sample was dismounted. Both flooding operations were conducted with the sample in a vertical position from the bottom towards the top. A thorough description of the experiment is given in Olsen (2007).

Experimental set-up

The experiment was conducted in a rig that simulates reservoir conditions. The rig consists of a Hassler-type core holder, a number of pressure cylinders for the experimental fluids, an acoustic separator for quantifying the fluid production, a differential pressure transducer for permeability measurement, and a high-pressure pump system for generating confining pressure, flow and pore fluid pressure. The core holder, pressure cylinders, separator, and differential pressure transducer are all situated inside a thermostatically controlled oven (Fig. 1).

Temperature and fluid pressure conditions were based on data from the adjacent Dan field reservoir, and corrected for the 250 m depth difference between the two reservoirs, Halfdan being the deeper. The temperature was corrected using a temperature gradient of 0.04°C/m. Assuming pressure correspondence between the two reservoirs, the Halfdan fluid pressure was estimated by extrapolation from the Dan field using a pressure gradient of 0.075 bar/m. Temperature, pressure and gradient values are from Jørgensen (1992). The oil used in the experiment was degassed crude oil from the Dan field. The water composition was similar to that of formation water from the Halfdan field. Fluid densities were measured at GEUS, while the water viscosity at reservoir conditions was estimated from data on the viscosity of similar brines. During the experiment differential pressure across the sample, pore fluid pressure, hydrostatic confining pressure, flow...
rate, cumulative injected fluid volume, produced oil volume and temperature were continuously logged. Before and after the flooding experiment the sample was characterised by measuring a number of parameters (Table 1).

Water flooding

The water flooding took place with a constant flooding rate of 0.62 ml/h and lasted 33 days with a total water injection of 490 ml or 5.35 times the pore volume. Results of the water flooding are presented in Fig. 2. Water breakthrough occurred after 77 hours when the water throughput was 0.458 times the pore volume. Before breakthrough, oil was produced from the sample at the same rate as the water was being injected. After breakthrough, the rate of oil production dropped sharply and continuously. A low oil production rate was sustained for a considerable time, but stopped completely before the flooding was terminated. A total oil volume of 0.053 times the pore volume was produced after breakthrough. Total oil production during the water flooding was 0.496 times the pore volume or 63.8% of the oil originally present in the sample.

A model was developed that fits the oil production (Fig. 2). Before breakthrough, the oil production shows a linear relationship with the injected water volume. After breakthrough, the oil production shows an exponentially decreasing relationship. Both relationships show a nearly perfect fit to the actual oil production.

Measurements of differential pressure across the sample were used to calculate the water permeability during the water flooding (Fig. 2). At the end of the water flooding the differential pressure had stabilised, indicating that fluid movement within the sample had stopped. Both the oil production and permeability curves show typical water-flooding development.

Flooding with CO2-enriched water

The flooding with CO2-enriched water was carried out at the same rate as the water flooding, i.e. at 0.62 ml/h. It lasted 64 days, and the total throughput of CO2-enriched water was 949 ml or 10.4 times the pore volume. The CO2-enriched water had a CO2-content of 26.6 standard m³ CO2/standard m³ water corresponding to a CO2-saturation of 100% at 85°C and 282 bars fluid pressure (Chang et al. 1998).

Diffusion of CO2 between oil, CO2-enriched water and water without CO2 may cause the oil within the separator to either swell or shrink as CO2 diffuses between the fluid phases. Such volume changes are troublesome as they cannot be distinguished from oil being produced from the sample. In an attempt to establish equilibrium between separator oil and CO2-enriched water, an amount of CO2 was added to the separator before starting the CO2-enriched flooding and allowed to equilibrate with the separator fluids for nine days. Using the data of Chang et al. (1998) the amount of CO2 was adjusted so as to create the same CO2-saturation in the water of the separator as in the brine used for flooding.

Figure 3 presents a plot of oil produced during the CO2-enriched flooding versus time. The oil production curve has

Table 1. Flooding experiment to enhance oil recovery: sample characterisation

<table>
<thead>
<tr>
<th>Character</th>
<th>Initial characterisation</th>
<th>Final characterisation</th>
<th>Change</th>
<th>Percent change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry weight (g)</td>
<td>613.37</td>
<td>609.05</td>
<td>-4.32</td>
<td>-0.70</td>
</tr>
<tr>
<td>Diameter (cm)</td>
<td>3.77</td>
<td>3.77</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Length (cm)</td>
<td>28.32</td>
<td>28.24</td>
<td>-0.07</td>
<td>-0.26</td>
</tr>
<tr>
<td>Bulk volume (ml)</td>
<td>318.56</td>
<td>316.92</td>
<td>-1.64</td>
<td>-0.52</td>
</tr>
<tr>
<td>Porosity (% bulk volume)</td>
<td>28.77</td>
<td>29.09</td>
<td>0.32</td>
<td>1.10</td>
</tr>
<tr>
<td>Pore volume (ml)</td>
<td>91.64</td>
<td>92.18</td>
<td>0.53</td>
<td>0.58</td>
</tr>
<tr>
<td>Gas permeability (mD)</td>
<td>0.62</td>
<td>0.76</td>
<td>0.14</td>
<td>23</td>
</tr>
</tbody>
</table>

Fig. 2. Produced oil volume (Np) versus injected water volume (Vinj) during flooding with water. Model before breakthrough: Np = 0.98 × Vinj. Model after breakthrough: Np = 0.50 – 0.08 × exp(–Vinj/1.57). Fluid saturation (fraction of pore volume): initial water saturation = 0.223, water breakthrough at water saturation = 0.666, final water saturation = 0.719, produced oil = 0.496.
During flooding with CO₂-enriched water it is expected that no oil is produced from the sample before oil affected by the CO₂ has moved to the outlet end of the sample. It is therefore reasonable to assume that the initial section of the oil production curve with negative slope represents the time before breakthrough of the CO₂-enriched water and the first produced oil. The section with negative slope then represents a period without oil production and should be horizontal. The section of the oil production curve after flow-stop should also be horizontal as no oil can be produced without flow. Using these arguments a swelling correction curve has been constructed (Fig. 3). As oil shrinkage in the separator changed to oil swelling during the experiment, a section with neither shrinkage nor swelling is present in the middle part of the correction curve. This part of the curve indicates equilibrium in the separator. The correction curve of Fig. 3 therefore consists of three linear segments indicating shrinkage, equilibrium and swelling. A true correction curve probably would have a gradually changing slope, but in the absence of more information, linear line segments have been used.

The data are interpreted as follows: At the start of flooding with CO₂-enriched water, the pore space of the sample contained 66 ml of CO₂-free water while the fluids of the separator were CO₂-saturated. During the first week of the flooding, the CO₂-free water of the sample flowed to the separator and caused the oil of the separator to shrink as CO₂ diffused from oil to water. After breakthrough of CO₂-enriched water, the CO₂ content of the water in the separator gradually increased. After some time the direction of CO₂ diffusion changed, causing the oil of the separator to swell, a condition that continued after the end of the flooding.

Figure 4 presents oil production curves for flooding with CO₂-enriched water with and without correction for swelling. Compared to the water flooding, the amount of oil produced during flooding with CO₂-enriched water was small. Total oil production was 0.047 times the pore volume equivalent to 6.1% of the oil originally present in the sample, if swelling correction is applied, and 0.032 times the pore volume or 4.2% of the oil originally present in the sample, if swelling correction is omitted. The swelling correction is considered valid, and hence the corrected values are preferred.
A model has been developed that approximates the oil production profile (Fig. 4). The fit is reasonable, although inferior to the fit obtained for the water flooding (Fig. 2). The inferior fit is at least partly caused by the smaller volume changes compared to the water flooding, causing a greater relative experimental uncertainty.

Dissolution effects
The bulk volume of the sample was reduced by 1.64 ml during the experiment (Table 1), equivalent to a grain volume loss of 1.17 ml. This is attributed to a distinct dissolution structure that was found at the inlet end face after the experiment (Fig. 5). The structure was due to dissolution of the chalk by the CO₂-enriched water. Dissolution structures were not visible on the other surfaces of the sample. Porosity of the sample increased by 0.32% of the bulk volume during the experiment (Table 1), which indicates that 1.01 ml of grain material were dissolved from the interior of the sample during the experiment. Combining the bulk volume loss and the porosity increase indicates a total dissolution of 2.18 ml of grain material, which is equivalent to the loss of 5.91 g of calcite. The measured weight loss was 4.32 g, which is considered to agree within the experimental uncertainty (Table 1).

The gas permeability increased by 23% during the experiment (Table 1), which is remarkable compared to the modest increase in porosity. The increase in both porosity and permeability was evenly distributed among the four subsamples, indicating a certain amount of dissolution throughout the sample (Olsen 2007). The evidence shows that dissolution took place both close to where the CO₂-enriched water entered the sample and within the sample. A small length reduction (Table 1) occurred due to the formation of the dissolution structure.

Conclusions
Water flooding of a low-permeable Ekofisk chalk sample from the Nana-1X well in the Danish North Sea resulted in an oil saturation of 28.0% of the pore volume with an oil recovery of 63.8% of the oil originally present in the sample. Flooding with CO₂-enriched water corresponding to 10.4 times the pore volume increased the oil recovery by 6.1% of the oil originally present in the sample, resulting in a final oil saturation of 23.3% of the pore volume. Compared to the water flooding, the flooding with CO₂-enriched water increased the final oil recovery by 9.6%. A correction procedure was applied to correct for diffusion processes within the separator of the rig. At the inlet end of the sample a dissolution structure was created by the CO₂-enriched water. The rest of the sample was visually unaffected by the flooding, but the injection resulted in a 1.1% increase in porosity and a 23% increase in gas permeability, which shows that some dissolution took place within the pore space of the sample.

Acknowledgements
Financial support was received from the Ministry of Science, Technology and Innovation, and from the European Network of Excellence on Geological Storage of CO₂ that is co-funded by the European Commission within the 6th Framework Programme.

References
Ladinian palynofloras in the Norwegian–Danish Basin: a regional marker reflecting a climate change

Sofie Lindström, Henrik Vosgerau, Stefan Piaseci, Lars Henrik Nielsen, Karen Dybkjær and Mikael Erlström

The Triassic – lower Cretaceous sedimentary succession of the Norwegian–Danish Basin has for a long time been of exploration interest, and numerous studies have been carried out. However, high-resolution correlation within the basin remains necessary, especially between the Danish and Norwegian parts of the basin. A variety of litho- and biostratigraphic schemes have been applied to the succession over the years, but lack of consistency in terminology has often led to confusing interpretations of the geological development. In this study a sequence stratigraphic scheme has been developed for the Danish Basin and a compiled palynological horizons are identified. One of the aims of this study is to pass Middle Jurassic – Lower Cretaceous clastic rocks, Lower Jurassic claystones, while the upper sequence encompasses Middle Jurassic – Lower Cretaceous clastic rocks,

Geological setting

The intracratonic Permian–Cenozoic Norwegian–Danish Basin is bounded to the south by the Ringkøbing–Fyn High and to the north by the strongly faulted Sorgenfrei–Tornquist Zone (Fig. 1). The basin was formed by Late Carboniferous – Early Permian crustal extension followed by thermal sagging, local faulting and salt tectonics. The syn-rift succession consists of Rotliegendes volcaniclastic rocks, alluvial conglomerates and sandstones as well as lacustrine mudstones. The overlying Zechstein–Cenozoic post-rift succession consists of two major sequences separated by an early Middle Jurassic unconformity that reflects regional uplift and erosion (Nielsen 2003). The lower sequence comprises Zechstein salt, Triassic sandstones, mudstones, marls and carbonates and Lower Jurassic claystones, while the upper sequence encompasses Middle Jurassic – Lower Cretaceous clastic rocks,
Upper Cretaceous Chalk and Cenozoic clastic rocks. Large parts of the lower sequence are difficult to date accurately by biostratigraphy owing to the predominantly continental strata deposited during a hot and arid climate, whereas the upper sequence is dominated by marine fossiliferous deposits, which are easier to date.

The investigated succession and the stratigraphic approach

The principal reservoir rocks and potential source rocks of the basin were formed during Late Triassic – Late Jurassic times (Petersen et al. 2008). Different lithostratigraphic terminologies are used for the Norwegian and Danish areas (Fig. 2). An inconsistent mixture of lithostratigraphic names from both Norwegian and Danish schemes is commonly used by the operators in well reports, and in some cases, lithostratigraphic names normally applied to units in the Norwegian Central Graben further contribute to the confusion. A robust sequence stratigraphic scheme established in the Danish Basin by Nielsen (2003) and a compiled palynostratigraphic event scheme are applied to a number of wells (Felicia-1, K-1, F-1, Inez-1, 11/10-1, 10/7-1, 9/11-1 and 8/11-1) situated along an E–W trending transect from the Fjerritslev Fault NW of Jylland to the border of the Norwegian Central Graben (Fig. 1). Based on characteristic well-log patterns supported by lithological descriptions from well reports, formation tops and sequence stratigraphic surfaces were identified and integrated with palynological events identified in this study. The latter events are based on established sporopollen and dinoflagellate cyst stratigraphies for the Triassic – Early Cretaceous of western Europe. Selected important palynostratigraphic events and sequence stratigraphic surfaces are shown in Fig. 2.
The results of the correlation show that lithostratigraphic units and key sequence stratigraphic surfaces can be followed across the Danish and Norwegian areas indicating that the general depositional development along the transect largely follows the pattern described by Nielsen (2003). Hence, the sequence stratigraphic and lithostratigraphic schemes established for the Danish part were successfully applied to the Norwegian wells, as exemplified in Figs 1, 2.

However, the lack of readily recognizable sequence stratigraphic key surfaces and biostratigraphic events within the Middle – Upper Triassic succession is a major problem for reliable stratigraphic analyses.

The Middle Triassic – an unsuitable climate for palynomorph preservation

During the Middle Triassic the Norwegian–Danish Basin was situated around 35°N. The arid to semi-arid conditions that had prevailed during the Early Triassic continued, as signified by mainly fluvial and lacustrine, heterogeneous, siliciclastic rocks of the Skagerrak Formation (Michelsen & Clausen 2002). Marine calcareous mudstones and carbonates of the Muschelkalk Formation in the North German Basin expanded northwards during a transgressive event in the Anisian to early Ladinian (Michelsen & Clausen 2002). Arid to semi-arid climatic conditions continued during early Late Triassic times, with deposition of variegated, calcareous, anhydritic and pyritic mudstones in sabkhas and ephemeral lakes. In the deep central part of the basin more permanent lakes were established. The deposits are included in the Oddesund Formation (Danish area) and Smith Bank (Norwegian area) formations. Towards the basin margins in the north and north-east these deposits pass into alluvial fans and fluvial sediments of the Skagerrak Formation. The combination of large lateral variations in depositional environment and the absence of extensive marine-flooding surfaces and marked unconformities hinder identification of reliable and regional sequence stratigraphic key surfaces.

Whereas Middle to lower Upper Triassic successions of the Arctic, Alpine and Tethys regions show evidence of fairly rich and diverse vegetation, the pre-Rhaetian Triassic rock-beds of the Norwegian–Danish Basin only contain sparse palynomorphs. However, this does not necessarily mean that there were no plants growing in the area at the time of deposition. Most arid areas today host some vegetation adapted to such a hostile climate, but conditions for preservation of palynomorphs are generally poor due to oxidation of the sediments. Nevertheless, the present study indicates that during a restricted interval in the latest Middle Triassic the area hosted a relatively rich vegetation and the climatic conditions in the area were better suited for palynomorph preservation.

Ladinian spore–pollen floras

Well-preserved, typical Middle Triassic palynofloras were found in ditch cuttings from the lowermost part of the Oddesund Formation in the Felicia-1 well, and in the lower part of the Skagerrak Formation in K-1 and 11/10-1. These assemblages are distinguished from caved Rhaetian–Cretaceous material by their generally darker colour. All the assemblages contain Illinites chitonoides, a pollen species that has a last appearance datum at the top of the Ladinian in northern Europe, and within the Carnian in the Arctic region (de Graziansky et al. 1998). The assemblage from Felicia-1 is dominated by the bisaccate pollen Ovalipollis ovalis (Ovalipollis), which has its first common appearance datum at the base of the late Ladinian (de Graziansky et al. 1998). In addition, members of Prototriadispora, e.g., P. fastidoides and P. macroverrucosa, and Triadispora, mainly T. crassa, T. planata, T. verrucata, are common constituents of the palynofloras. The co-occurrence of Austrotriletes crisetus, Keaerliea mocii, Pseudosporites anicus, Sarotenacites quadricostatus, Binaesporites aquilulaulus, Austriarispores spp., Cameroporesites acutatus, C. verrucatus, Duplicitosporites granulatus and Enzonalispores eigeos also suggests a late Ladinian age (de Graziansky et al. 1998; Schulz & Heynisch 2003). The presence in Felicia-1 of the typical Triassic chitonococcalae coenobium Phaeoicystis monellianum with a known stratigraphical range from late Anisian to latest Norian indicates brackish to freshwater conditions.

In the easternmost parts of the Norwegian–Danish Basin comparable palynofloras are present in core samples from the Høllvikken-2 well and two other wells in southern Sweden. The Høllvikken-2 palynoflora is dominated by monolete (Austriarispores spp.) and trilete (e.g., Calamospora spp. and Anapliculatisporites spp.) spores, but bisaccate pollen are also abundant and diverse. Both abundant Austriarispores spores and species of Prototriadispora suggest a latest Muschelkalk – early Keuper (i.e. Ladinian) age, and this range is further limited to early Keuper by the presence of Retisulicites perforatus (last appearance datum in earliest Carnian), Neeviosporites lubricus, and Ovalipollis brunus. A banana-shaped acritarch, Datryphythus sp., is present in the palynoflora from FCC-1.

Comparable palynofloral assemblages were found in well A-2 in the Danish Central Graben containing e.g. Austriarispores saturei, Austrotriletes crisetus, Illinites chitonoides, Triadispora spp., Prototriadispora fastidiosides, P. granulatus, Prototriadispora spp., and Seriobacites syndex. (Bertelsen 1975).

Thus, typical Ladinian palynofloras appear to be present within a relatively restricted time interval along the northern margin of the mid-Triassic Muschelkalk sea.
Remarks on stratigraphy, environment and climate

The Höllviken-2 assemblages are recorded in a succession of dark, fine-grained sediments (Maglarp-C member) with fossiliferous intervals containing fossil fish, ostracods and characaceous algae. Previous biostratigraphy based on the latter correlates the succession with late Muschelkalk to early Keuper, i.e. mainly of Ladinian age (Kozur 1974). The characaceous algae suggest limnic to possibly brackish environments, while the fish fauna vary from limnish-brackish (e.g.

Palaeoniscus spp.) to fully marine (e.g.

Bergenia spp. and

Hybodus spp.). The ostracods (

Bairdia spp.) indicate warm, shallow littoral environments. Hence, the combined macrofossil evidence suggests a shallow marine environment with brackish to limnic lagoons behind the coast. The palynoflora recorded in the Höllviken-2 core supports a Ladinian age.

All the contemporaneous palynofloras described here contain several elements typical of warm and dry conditions. For instance,

Antistratitites is a common constituent in arid to semi-arid Triassic palynofloras worldwide. The parent plants, pleurosmiaceous hycopisids, are believed to have been opportunistic and saline-tolerant inhabitants of intertidal environments (Retallack 1975). The tanninaceous bisaccates, e.g.

Lunatisporites and

Bisantiolithes, are generally regarded to have been produced by pteridosperms, and adapted to warm and dry conditions. The bisaccate pollen of

Duplicisporites and

Enzonalasporites, and pollen of the Circumpolles group, i.e.

Striatoabietes, are generally regarded to have been produced by pteridosperms, and adapted to warm and dry conditions. Hence, the combined macrofossil evidence suggests a shallow marine environment with brackish to limnic lagoons behind the coast. The palynoflora recorded in the Höllviken-2 core supports a Ladinian age.

All the contemporaneous palynofloras described here contain several elements typical of warm and dry conditions. For instance, Antistratitites is a common constituent in arid to semi-arid Triassic palynofloras worldwide. The parent plants, pleurosmiaceous hycopisids, are believed to have been opportunistic and saline-tolerant inhabitants of intertidal environments (Retallack 1975). The tanninaceous bisaccates, e.g. Lunatisporites and Bisantiolithes, are generally regarded to have been produced by pteridosperms, and adapted to warm and dry conditions. The bisaccate pollen of Duplicisporites and Enzonalasporites, and pollen of the Circumpolles group, i.e. Striatoabietes, are generally regarded to have been produced by pteridosperms, and adapted to warm and dry conditions. Hence, the combined macrofossil evidence suggests a shallow marine environment with brackish to limnic lagoons behind the coast. The palynoflora recorded in the Höllviken-2 core supports a Ladinian age.

Conclusions

The recorded Ladinian palynofloras from the Maglarp-C member in southern Sweden, the lowermost Oddesund Formation in Denmark, and from the middle Skagerrak Formation in both Denmark and Norway, enable correlation between these units in the otherwise poorly dated Triassic succession in the Norwegian-Danish Basin. The fact that the palynofloral assemblages are recognisable even in ditch cutting material of exploration wells makes them very useful markers. The palynoflora contains many elements indicating a warm and dry climate, and deposition in fresh to brackish water in coastal environments. The preservation of the palynoflora probably reflects a climatic event with a change to more humid conditions, similar to that recorded in northern and central Europe.

Acknowledgement

We thank Talisman Energy Norway A/S for allowing us to publish results from the Norwegian wells.

References

Authors’ addresses

SL., J.H.V., L.H.N., S.P., & K.D., Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: sli@geus.dk

24
The Danish North Sea coast is a dynamic sedimentary environment experiencing erosion, transport and re-deposition of sand along the coast. Because of the natural and economic value of the coastal zone expensive protection measures such as nourishment of the coast are undertaken. The present study utilises provenance analysis techniques developed at the Geological Survey of Denmark and Greenland (GEUS) to characterise the coastal sand bodies by fingerprinting the heavy minerals in the sand. The aims of the study are to test these new methods in an active sedimentary environment and to develop an understanding of transport pathways along the coast. A total of 40 samples have been collected and analysed as part of the project. This paper gives an outline of the project and provides examples of the methods used based on six samples from the Husby profile on the west coast of Jylland (Fig. 1). The study is a collaboration project involving GEUS and the Department of Geography and Geology (DGG) at Copenhagen University; GEUS is responsible for the analyses and DGG for sample collection.

Provenance analysis based on modal abundance and composition of heavy minerals is used to understand the dispersal of sand in ancient siliciclastic systems, with focus on problems relevant to the petroleum industry (e.g. Larsen et al. 2006; Morton et al. 2007). Investigation of present-day processes and sedimentary environments may provide a key to understand how provenance indicators can be used to describe and interpret fossil clastic sedimentary systems. It is well known that properties such as grain shape and density are important factors in the processes controlling transport and deposition of mineral grains. As the heavy minerals used in provenance analysis have a wide range of densities and shapes, it is important to include these properties in studies of their dynamics in the environment. Therefore GEUS has focused on developing computer-controlled scanning electron microscopy (CC-SEM), which provides information on mineralogy and mineral chemistry together with grain size and shape (Keulen et al. 2008). Furthermore, the development of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analysis has focused on a single, robust mineral species, zircon. These analyses also yield information on the age of the zircon mineral grains, and the age distribution of zircon grains is used to fingerprint the sand (Knudsen et al. 2005; Flett et al. 2006). Saye & Pye (2005) have described variations in the bulk chemical composition and particle size of coastal sands in Denmark. The work outlined here is a continuation of this work, but using different methods focusing on the modal mineralogy of the heavy minerals in the sand as well as the age distribution of detrital zircon grains.

Sample sites
Samples have been collected from three settings. (1) From coastal cliffs that are being actively eroded and accordingly supply sediment to the littoral drift system along the coast of Jylland. The sampling aims at fingerprinting some of the potential sources of sand mainly from till beds and glacio-fluvial sediments. (2) From four profiles orientated perpendicular to the coast; the samples represent lower shoreface, upper shoreface, beach and dunes (profiles at Bovbjerg, Husby, Vejers and Skallingen; Fig. 1). The aim is to study the variation of the sediment fingerprint between the different sedimentary facies along the coast as well as the variation within identical sedimentary environments. The profiles are situated along the southward-directed net littoral drift of sand that exists between Bovbjerg and Skallingen. (3) From the Vejers/ Skallingen/Grådyb area samples will be analysed to investigate if the littoral drift sediment bypasses Horns Rev and to characterise the sediments.
ment exchange between the North Sea and Vadehavet (Danish Wadden Sea) relative to other sources and sinks in the area. Here we present data from the profile at Husby.

Computer-controlled scanning electron microscopy (CCSEM)

CCSEM is used at GEUS to analyse the composition and properties of detrital mineral grains. Sediment samples are sieved and the fraction between 45 and 710 µm analysed. The samples are separated using heavy liquid (2.89 g/cm³) and the heavy mineral fraction is used for analysis. The grains are mounted in epoxy in such a way that the grains do not touch one another. The mount is polished and analysed by CCSEM to determine the chemical composition of 1200 individual heavy mineral grains, together with their size and shape. The result of the chemical analysis of each grain is compared with a library of mineral compositions. The results are stored in a database and properties such as modal mineralogy, mineral chemistry and grain-size distributions of the individual species can be displayed (Figs 2, 3). The CCSEM analytical procedure is described in further detail by Knudsen et al. (2005), Keulen et al. (2008) and Bernstein et al. (2008).

LA-ICP-MS fingerprinting of zircon

When using the modal proportions of heavy minerals for characterising the provenance of the sand, it is important to recognise potential hydrodynamic effects due to, e.g. grain density. In addition, the size and shape characteristics of the grains of the different heavy mineral species may influence their response to sedimentary processes. Furthermore, the relative sensitivity of the heavy mineral species to

Fig. 2. Grain-size distribution curves for zircon, garnet, ilmenite and mafic silicates in two samples from Husby taken at 3 and 6 m water depth. Note that if only the 63 to 125 µm fraction of the heavy mineral fraction was analysed, the modal proportions of the heavy mineral species would not represent the actual proportions in the sand.

Fig. 3. The heavy mineral proportions in the six samples from Husby recorded by CCSEM. The samples from the shoreface (–3, –6 m) are characterised by low contents of garnet (c. 7%) in contrast to the samples from the beach and dune that are characterised by high garnet contents (c. 20%).
chemical and physical decomposition depends on the stability of the different minerals. To overcome these problems, it is advisable in provenance analysis to focus analysis on one mineral species because differences in hydrodynamic behaviour or weathering can thereby be discounted. For this purpose the extremely stable mineral zircon is very well suited. A key property of zircon in provenance analysis is the relatively high content of uranium, which makes the mineral well suited for dating. At GEUS the measurements are carried out on a laser ablation inductively coupled mass spectrometer (LA-ICP-MS; Frei et al. 2006; Frei & Gerdes 2009). The sand is physically separated using a shaking table to concentrate the very heavy minerals. From this concentrate, the zircon is picked out and mounted (c. 150 zircon grains per sample) in epoxy. The mount is polished and introduced to the laser ablation system. A c. 30 µm diameter spot is ablated with the laser in the core of each zircon grain, and the ablated material is introduced into the ICP-MS, in which the ratios between the different U and Pb isotopes are measured.

Results from Husby

Some results of analyses of six samples collected near Husby (Fig. 1) are discussed here. Two samples are from till beds exposed in the coastal cliff, one is from a dune, one is from the active swash zone and two samples are from the shoreface, at water depths of 3 and 6 m.

The grain-size distribution varies among the different heavy mineral species (Fig. 2). Zircon with the highest density is finer-grained than lighter minerals such as ilmenite and garnet, and the mafic silicates (amphibole, pyroxene and epidote) are the most coarse-grained of the heavy minerals. This is in close accordance with that predicted by Stokes' law, and implies that grain-size sorting has acted according to grain-fall velocity. The steepness of the grain-size distribution curves also varies among the different minerals. The garnet curve is steeper and narrower than that of, for example,

![Age distribution of zircons in the samples from Husby. The frequency (red histograms) indicates the number of zircons in the age brackets (100 Ma). The green area indicates the content of concordant grains whereas the yellow area indicates the discordant grains (only present in the till samples). The samples from the shoreface (<5 m) are characterized by two main populations, one with ages between 1000 Ma and 1300 Ma and one with ages between 1400 Ma and 1900 Ma, the latter being the most abundant. Samples from the beach and dune contain the same populations, but are characterized by more equal proportions of the two populations. It can also be noticed that the samples from the till in the cliff behind the beach are characterized by a pattern similar to the samples from the shoreface.](image-url)
ilmenite or mafic silicates. This could be caused by differences in grain shape, and one of the aims of the project is to investigate how the grain-size distribution varies among the different sedimentary environments along the west coast of Jylland.

In provenance analysis it is often assumed that ratios between the heavy mineral species can be used as provenance indicators. Due to analytical constraints, or chosen standard procedures, a given size-fraction (typically 63 to 125 µm; Hallsworth & Chisholm 2008; Yang et al. 2009) is often used for such analysis, regardless of the fact that the sands which are compared have different overall grain-size distributions. As can be seen on Fig. 2, for example, the modal proportions of the heavy minerals would not reflect the true values if only the fraction between 63 and 125 µm was analysed. The sample Husby –6 m would be characterised by its finer part, with zircon being over-represented whereas the sample Husby –3 m would be close to the modal value. In Fig. 3, the modal proportions of the heavy minerals show that the composition of the heavy mineral fraction in the shoreface sands (–6 and –3 m) is similar but different to the beach sand and dune sands, which in turn resemble each other. The main difference between these two pairs is that garnet is more abundant in the beach and dune sands than in the shoreface sand. The heavy mineral assemblages from the tills exposed in the cliff faces Husby, D, and western Sweden to the north of Jylland whereas the Early Proterozoic zircons were probably derived from the Sveco-Norwegian orogen in southern Norway and eastern Sweden to the north of Jylland whereas the Early Proterozoic zircons were probably derived from Jornian and Sveco-Fennian sources to the east.

Both the mineral paragenesis data and the zircon age distributions suggest that the shoreface sands have a provenance that is distinct from the beach and dune sands at Husby. This is surprising, and further work will concentrate on explaining these patterns, with the aim of understanding the processes responsible for the observed distribution of these sands. In addition, the distribution of heavy mineral assemblages along the shore will be analysed.

References

Authors’ addresses

C.K. & T.F.K., Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: ckkn@geus.dk

T.A. & J.B. W.F., Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
The Møns Klint Glaciotectonic Complex (Fig. 1) exposed in the N–S-trending chalk cliff on the east coast of the island of Møn in south-east Denmark is one of the most famous glaciotectonic geosites in the world. People of all nationalities are attracted to the site, which has more than 300 000 visitors per year. Many of them may not realise the uniqueness of the glaciotectonic framework, and are probably more fascinated by the spectacular view of the white cliff and chalk peaks separated by the deep green gorges. However, without the glaciotectonic deformation the cliffs would never have formed. Instead the Cretaceous chalk would still have been resting horizontally below the seabed, covered by glaciofluvial sand, glaciolacustrine clay and clayey till.

In the summer 2007, a new natural science exhibition centre, GeoCenter Møns Klint, was opened. The exhibition focuses on the geology of Denmark with special reference to the chalk cliffs of Møns Klint. Prior to the decision to build the centre, the Geological Survey of Denmark and Greenland was asked to provide an evaluation of the landslide risk for the site, because landslides regularly occur along the cliff section (Pedersen 2003). A detailed structural analysis was consequently carried out at the planned site of the centre just above the Maglevandsfald gorge (Fig. 1). During this investigation it became obvious that understanding the glaciotectonic framework was a prerequisite for the geological risk analysis. Thus the structural details at Maglevandsfald became a key point for the glaciotectonic model of Møns Klint which we present in this paper.

Geological setting of Møns Klint

The Cretaceous chalk represents the oldest bedrock affected by glaciotectonic thrusting in Denmark. The chalk consists of a fine-grained matrix of coccoliths and remains from invertebrates (Surlyk & Håkansson 1999). The chalk at Møn is correlated with the upper part of the Tor Formation in the North Sea and the Danish Basin (Surlyk et al. 2003).

An erosional unconformity on top of the chalk represents a hiatus of about 60 million years. Due to erosion, the unconformity is found at gradually lower and lower levels towards the southern part of the cliff, which indicates that the pre-Quaternary relief probably contributed to the formation of glaciotectonics in the area. In some parts of Møn the pre-Quaternary unconformity is overlain by a Saalian till, marine Eemian clay and three Weichselian tills intercalated by glaciolacustrine and glaciofluvial deposits (Houmark-Nielsen 1994). However, at Møns Klint an old Weichselian till is the oldest Quaternary deposit recognised at present (Pedersen & Gravesen 2006). This till is a grey and reddish sandy till that grades up into a gravelly, stone-rich top surface indicating terrestrial conditions. We tentatively correlate this unit with the Ristinge Klint Till (Houmark-Nielsen 1987, 1994), which was deposited by a Baltic ice stream in the early part of the Weichselian (~ 60 000 years BP) from a source area in the Baltic Sea. When the Baltic Ice Stream melted back the depression became occupied by a huge lake, in which dark glaciolacustrine mud rich in dropstones was deposited (Houmark-Nielsen 1994; Houmark-Nielsen & Kjær 2003).
The unit is informally called the elephant clay due to its characteristic erosion features. At the Late Weichselian glacial maximum the Swedish Ice advanced over the eastern part of the Danish Basin onto the Main Stationary Line depositing the Mid Danish Till on Møn (Fig. 2; Houmark-Nielsen 1987; Pedersen & Gravesen 2006).

At about 18 000 years BP the Young Baltic Ice Stream reached Møn (Houmark-Nielsen & Kjær 2003). The pressure from the ice was directed away from the central axis of the ice stream towards both north and south, where it thrust up the chalk sheets at Møns Klint. The glaciotectonic structures at Møns Klint can be divided into three architectural elements. In the southern part the thrust sheets form an imbricate fan with thrust faults striking E–W, in the central part the structures form an antiformal stack, and farthest to the north the thrust sheets dip gently to the south in the foreland regime of the thrust deformation (Fig. 3; Pedersen 2000). Towards the end of the Weichselian the Scandinavian ice sheet melted back. However, a readvance from southern Sweden reached Møn from east-north-east at a time between 17 000 and 15 000 years BP, which was responsible for superimposed deformation of the glaciotectonic complex (Pedersen 2000).

Photogrammetric mapping and a borehole investigation

A 3-D terrain model of the area was developed for the risk evaluation. The data for the model were provided by a photogrammetric survey and a digital model was constructed, in which the trace of the glacial deposits, interbedded between the unconformity on top of the chalk and the base of an overlying chalk sheet, was positioned (Fig. 4). In addition, a borehole was drilled to investigate whether karst cavities or an unforeseen thrust-fault zone with dip towards the cliff and beach were present. If a fault zone exists below the location it could be a candidate for a landslide similar to the one that destroyed the Store Taler chalk peak in January 2007 (Fig. 5). The borehole was placed on top of the cliff 100 m above sea level close to the old Hotel Store Klint (Fig. 6). The uppermost 16.5 m consist of glacial sediments resting upon the chalk unconformably. The oldest unit in the glacial succession is a 1 m thick till that is correlated with the Ristinge Klint Till. This formation is overlain by 2.3 m glaciolacustrine mud, which grades into the nearly 2 m thick Mid Danish Till: A 7.7 m thick unit of glaciolfluvial sand and gravel overlies the Mid Danish Till; the upper part of the glacial succession is a 3.5 m thick, sandy till that was deposited by the Young Baltic Ice. Below the unconformity the drilling penetrated 48 m of Cretaceous chalk, after which the drilling was...
unfortunately stopped for logistic reasons. It would have been perfect if the borehole had reached the level of the lower thrust fault and the underlying glacial succession. However, the data demonstrate that neither a karst cavity nor an eastward dipping thrust-fault zone was present.

Thrust-fault tectonics and superimposed deformation

The structures in the Møns Klint Glaciotectonic Complex are directly comparable to structures in thin-skinned thrust-fault belts formed by gravity spreading (Pedersen 2005). The geomorphological expression of a mountain range is clearly seen in the parallel-ridged landscape of Høje Møn (the eastern, hilly part of Møn). For detailed structural analysis five cross-sections were constructed across the Maglevandsfald (Figs 6, 7). The data for the cross-sections were taken from the photogrammetric survey combined with a structural investigation of the cliff section immediately south of Maglevandsfald. In the cross-sections two horizons of glacial successions are shown (Fig. 7). The lower glacial horizon rests on the unconformity on top of the chalk. The top of the glacial deposits is bordered by a thrust fault, where the base of the chalk sheet can be classified as a hanging-wall flat related to the earliest glaciotectonic deformation. Further to the south this flat can be followed into a hanging-wall ramp, which dips into the subsurface below the beach. This ramp strikes E–W, indicating that it is part of the antiformal stack (compare with Fig. 3). The thrust-fault flat magnitude, probably about 75 m below sea level. Therefore the chalk below the lower glacial unit is also interpreted as a thrust sheet lifted up from the décollement zone.

The lower glacial unit is folded in a SW-verging overturned structure, which has been deformed by the second glaciotectonic event. The structure is partly hidden by soil and vegetation in the Maglevandsfald gorge, but the upper limb of the structure is exposed at the cliff edge of Maglevandsnakken (Fig. 3). As the décollement zone must be situated at the base of the chalk unit, which in Fig. 7 can be seen to be about 60 m thick, the depth to this zone must be of similar
above the glacial unit is folded in the Maglevandsfald gorge structure with a fold axis trending NW–SE, which demonstrates the superimposed deformation. A similar wedge-shaped structure is present just below the edge of the Drønningselvcliff, which may indicate that a thrust sheet existed even higher in the antiformal stack before the Young Baltic Ice truncated the structure during the advance towards NNW.

Final remarks

Møns Klint is one of the most famous glacitectonic localities in the world. The structures in the Møns Klint Glacitectonic Complex are comparable to structures in thin-skinned thrust-fault belts formed by gravity spreading. The glacitectonic complex is responsible for the parallel-ridge landscape known as Høje Møn, where Aborre Bjerg (143 m) represents the highest hill in eastern Denmark. A combination of an imbricate fan and an antiformal stack is responsible for the impressive tectonic complex. Its main architecture was formed during the Young Baltic Ice Stream advance dated to about 18 000 years BP, but a readvance of ice from southern Sweden from 17 000 to 15 000 years BP is responsible for the superimposed deformation of the complex.

The most impressive unit forming the thrust sheet is the Maastrichtian chalk. The chalk is part of the huge carbonate platform that spread over northern Europe during the late Cretaceous. The top surface of the chalk, the pre-Quaternary unconformity, was originally situated more than 20 m below sea level, and the décollement zone for the thrusting is probably located about 80–100 m below sea level in a marl-rich variety of the chalk.

References

Fracture valleys in central Jylland – a neotectonic feature

Peter Roll Jakobsen and Stig A. Schack Pedersen

Geomorphological indications of tectonic activity in the Danish glacial landscape were pointed out already by Milthers (1916, 1948). He described a conspicuous system of N–S-trending, narrow valleys in central Jylland and interpreted them as fault-generated features (fracture valleys). The valleys occur in the area between Ulstrup and Hammel and in a smaller area near Skjed (Fig. 1). The most significant valley system is found near Hvorslev, and it is here referred to as the Hvorslev lineaments (Fig. 1).

An alternative interpretation of the genesis of the Hvorslev lineaments was presented by Hansen (1970). He argued that the N–S-trending valleys were formed by backwash erosion from E–W-orientated erosional valleys in a former drainage system related to former higher groundwater table. However, Milther’s interpretation that the valleys have a tectonic origin was later supported by Larsen & Kronborg (1994) and Torp (2001).

Former interpretations of the lineaments were primarily based on morphological studies and arguments. Recently the area with the Hvorslev lineaments was mapped as part of the systematic geological mapping of Denmark by the Geological Survey of Denmark and Greenland. The mapping of the surface lithology has added new information, and along with available seismic data it provides a framework for a well-founded interpretation of the elongated valleys, which is presented in this paper. We conclude that the fracture valleys are tectonic features, based on their morphology and because they are situated above a fault zone.

Fig. 2. Geological map of the Hvorslev area (extract from the digital map, see Jakobsen & Hermannsen (2007). Contour interval 5 m. The location of the seismic line 752D is shown with dots, which indicate the position of every 10th geophone.

Fig. 1. Digital elevation model of the Hvorslev region with place names mentioned in the text. The focus area is the northern part of the valley system between Ulstrup and Hammel near Hvorslev. The difference in elevation from the valleys to the highest areas is around 90 m. The rectangle shows the location of Fig. 3, and the inset map of Denmark shows the location of the model.

Geological setting

The highest levels in the region are covered by a till unit, mainly a clayey till, but with patches of sandy till (Fig. 2). On
the steep slopes of the Gudenå valley, glaciofluvial deposits are found below the till unit. Smaller outcrops of glaciofluvial sand appear in the till unit representing erosional windows in the till surface. Thus the uppermost lithostratigraphy in the region comprises a glaciofluvial unit overlain by a till. This succession is also recorded in boreholes in the region (Gravesen 1991). In most wells a clayey till is present at the top below which the glaciofluvial sand has a thickness of up to 20 m. The sand rests mainly on Oligocene mica clay and in a few places on Oligocene quartz sand.

The glaciofluvial unit is correlated with the Tøppestrup Formation (Larsen et al. 1977; Pedersen & Petersen 1997), which was deposited on an outwash plain in front of the ice advancing from the north-east. The clayey till is interpreted as deposited by the ice advance from the north-east that reached the Main Stationary Line in Jylland. The till is correlated with the Mid Danish Till of Houmark-Nielsen (1987) and its correlative the Fårup Till of Kronborg et al. (1990), which date to around 23 000–21 000 years before present in this part of Denmark (Houmark-Nielsen & Kjær 2003).

Morphology

The parallel alignment of valleys in the Ulstrup–Hammel area suggests that they can be characterised as fracture valleys (Fig. 1). The length of the valley system between Ulstrup and Hammel is about 17 km. The most prominent part of the system is located at Hvorslev, where the valleys trend N–S with a spacing of 125 m to 250 m. The individual valleys are up to about 9 km long and 6 m deep. The width of the zone with fracture valleys is 800–1100 m wide (Figs 1, 3). The valleys cut hills and erosional valleys without any change of direction and are therefore not controlled by the general landscape morphology. Even one of the highest hills in the area is cut at the top by one of the valleys.

The individual valleys show an undulating floor in the longitudinal direction, occasionally with small depressions containing bogs and lakes. Most cross-sections of the individual valleys display a U-shaped morphology; in some places an asymmetrical shape is seen with a steep eastern slope and a gently dipping western slope.

The trends of the westernmost valleys south of Hvorslev are concave towards the west, curving around a depression which is filled with postglacial freshwater deposits. Downhill towards this depression, and almost perpendicular to the Hvorslev lineaments, a system of erosional valleys cuts into the surface with a gentle fall towards the west. The most prominent erosional valley system is first order valleys with branching second order valleys. The major first order valley cuts through the Hvorslev lineaments and a stream starts in its lower part where one of the N–S-trending valleys intersects the erosional valley. The second order valleys are not as deep as the first order valleys, and are cut by the Hvorslev lineaments. Some of them are hanging valleys on the sides of the N–S-trending valleys.

The E–W-trending erosional valleys were generated shortly before the Hvorslev lineaments. Most of them are dry valleys that formed at a time when surface drainage was greater than now, most likely shortly after deglaciation. Erosion within the first order valleys was so strong that it sustained the effect of the formation of the Hvorslev lineaments, which were apparently almost penecontemporaneous with the erosional valleys.

Seismic records

The seismic section 73203 shows an E–W cross-section across the Hvorslev lineaments south-east of Bjerringbro (Fig. 4). The features between geophone positions 1090 and 1112 are inter-
interpreted as faults. They occur over a zone c. 2.5 km wide situated directly below the Hvorslev lineaments. The overall structure is interpreted as a negative flower structure, where extension caused downfaulting of segments into a minor graben bounded by marginal faults. Across the inferred fault zone downfaulting towards W predominates. The largest normal fault displacement is 0.05 second at 1.4 second two-way travel time measured on the reflector of the Base chalk, which corresponds to a downthrow of c. 50 m at 1400 m depth. East of the fault zone the reflector is horizontal, and to the west it dips weakly towards W.

Indications of faulting at the surface
Most of the area around the Hvorslev lineaments is covered by till. Along the steepest slopes of the asymmetrical valleys, glaciofluvial sand is recorded below clayey till and on the gently dipping slopes clayey till drapes the surface all the way to the bottom of the valley (Fig. 5). Our interpretation of this distribution of the lithological units is that the upper till unit has been displaced by a normal fault down to the floor of the valley, whereby the glaciofluvial sand is exposed in the footwall (Fig. 5). The fault planes dip steeply W with a vertical displacement of c. 6 m.

Discussion
The correlation between the Hvorslev lineaments and the faults inferred from the seismic section indicates that the lineaments are surface traces of deep-seated faults. The Hvorslev lineaments strike N–S, which most likely corresponds to the orientation of the faults.

The Himmerland Graben is located to the north of the Hvorslev lineaments (Fig. 6; Vejbæk 1990). It is a deep-seated structure outlined by two major N–S-trending basement-attached faults, which is associated with the Sorgenfrei–Tornquist Zone (Fig. 6). Dextral strike-slip faulting in the Sorgenfrei–Tornquist Zone has resulted in E–W extension across the Himmerland Graben and led to normal faulting. The major tectonic events which caused syn-rift subsidence within the Himmerland Graben occurred during the Triassic and in the late Cretaceous.

The Hvorslev lineaments are situated south of the eastern fault of the Himmerland Graben and probably form a southern continuation of this fault. The indication of downthrow towards W within the Hvorslev lineaments corroborates this assumption. This implies that the fault activity in the Himmerland Graben continues to the south into the central part of Jylland.

The fault-related valleys formed after deposition of the youngest till in the area, because the till is cut by faults (Fig. 5). The youngest glaciation of the area was during the main Weichselian ice advance, during which the Mid Danish Till was deposited. Because the fracture valleys and the erosional valleys were formed at the same time, the faulting probably occurred shortly after the recession following the main Weichselian ice advance. The glaciation of the region occurred around 21 000 years ago, which gives a maximum age for the formation of the fracture-valley system in central Jylland.

Two different causes can be suggested for the generation of the faults. Either the fault activity was a response to the glaciostatic rebound after the last deglaciation, or the faulting is related to the neotectonic extension responsible for the general graben subsidence in the Danish Basin. This question cannot be answered unambiguously on the basis of the available data, but the trend of the lineaments and graben faults are oblique to the general trend of the postglacial marine limit in the region (Mertz 1924) and hence are probably not linked to postglacial isostatic movements. The fact that the asymmetrical valleys show a downthrow towards W indicates that the valleys were formed in connection with tectonic activities in the Himmerland Graben. Moreover, the long length of the fault-related valleys also supports a tectonic origin.
In addition to the fracture-valley system between Ulstrup and Hammel, another system of similar valleys occurs near Skjød, as pointed out by Milthers (1916, 1948). Fracture valleys are also found farther to the east near Hinnerup (Fig. 1; Czakó 1994). Morphologically they are similar to the Hvorslev lineaments, although they are more curved. Nevertheless, we suggest that they are fault-controlled.

Conclusions

We suggest that the system of long, straight and narrow valleys in central Jylland is related to a fault zone recognised on a seismic section across the valley system. Hence the valleys are regarded as surface traces of a deep-seated fault zone. The faulting resulted in downfaulting of the surface-forming till along normal faults with downthrow mainly to W. The faulting occurred at a time when surface drainage was greater than at present, shortly after the last deglaciation that occurred around 21 000 years ago. The deformation is consequently a neotectonic activity. The fracture valleys indicate that the Himmerland Graben continues farther to the south than previously outlined, and that crustal deformation related to this tectonic feature took place during the late Quaternary. Fault-related valleys as described in this paper are geomorphological elements that characterise some parts of the Danish landscape. It is important to consider their potential implications for geological and hydrological models developed for the Quaternary deposits.

References

Soil erosion and land-use change during the last six millennia recorded in lake sediments of Gudme Sø, Fyn, Denmark

Peter Rasmussen and Jesper Olsen

The Danish landscape is characterised by low relief and consequently the risk of soil erosion is low compared to many central and southern European countries with more variable terrain (European Environment Agency 2000; Van der Knijff et al. 2000). However, even in countries with less intensive erosion, water-induced soil erosion is recognised as an increasingly important environmental issue due to its role in the transport of nutrients, pesticides and other contaminants to rivers, lakes and coastal waters (e.g. Stone 2000).

There are relatively few monitoring programmes of sediment erosion in Denmark and those that exist typically only cover the last few decades (Veihe et al. 2003). Therefore, it is difficult to identify long-term trends and baseline conditions. However, the geological record provides insight into patterns and rates of soil erosion through time. Lake and fjord sediment archives are especially useful because they can provide continuous and undisturbed sediment successions that can be analysed at high temporal resolution. These sediment records can be examined using a variety of approaches that include sedimentological, geochemical and biological analyses and thus generate important insight into baseline states, trajectories and responses to forcing mechanisms over long timescales, which would otherwise be difficult to obtain. The records are typically limited to yielding insight only into the average rate of erosion and they often provide little information about the spatial extent or distribution of erosional processes within a catchment area.

In this paper we present an example of a long-term erosional record from Gudme Sø, Fyn (Fig. 1). Numerous archaeological excavations have been undertaken near Gudme Sø, and the Geological Survey of Denmark and Greenland has carried out analyses of sediments from the lake to provide a continuous picture of landscape changes. Sediment accumulation rates of minerogenic matter (SAR-min in mg/cm² per year) were calculated and used as proxies of soil erosion from the catchment area to the lake (e.g. Mackereth 1966). The changes in SAR-min values were compared to pollen-inferred changes in vegetation and land-use from the same sediment core. The increases and decreases in non-arboreal pollen (NAP) were used as a record of changes in the proportion of open land. It is assumed that the variation in the sum of taxa of cultivated plants and Plantago lanceolata (ribwort plantain) reflects changes in the extent of arable land, and pastures or meadows, respectively (Behre 1981; Gaillard 2007). The record of colonies of the green algae Pediastrum sp. is used as proxy evidence for in-lake productivity (Bradshaw et al. 2005).

Study site and methods

Gudme Sø is located on south-east Fyn c. 5 km from the sea in a gently undulating terrain with surface deposits consisting of clay till (Fig. 1). The lake has a surface area of 9 ha, a mean water depth of 0.5 m, and a catchment area of 48 ha. It has no major natural inlets or outlets. An 11.8 m long sediment core of slightly humic gyttja with low calcareous content and varying silt and clay contents was retrieved from the lake. Age determination was provided by radiocarbon dating, and the chronology at the top of the core was further refined by linear interpolation, using the first occurrence of spheroidal carbonaceous fly-ash particles and the date of the sediment surface (i.e. the year of coring) as bracketing ages (Fig. 2).

Sediment accumulation rates of minerogenic matter (SAR-min in mg/cm² per year) were calculated and used as proxies of soil erosion from the catchment area to the lake (e.g. Mackereth 1966). The changes in SAR-min values were compared to pollen-inferred changes in vegetation and land-use from the same sediment core. The increases and decreases in non-arboreal pollen (NAP) were used as a record of changes in the proportion of open land. It is assumed that the variation in the sum of taxa of cultivated plants and Plantago lanceolata (ribwort plantain) reflects changes in the extent of arable land, and pastures or meadows, respectively (Behre 1981; Gaillard 2007). The record of colonies of the green algae Pediastrum sp. is used as proxy evidence for in-lake productivity (Bradshaw et al. 2005).
Results and discussion

Chronology

The 14C dates from the Gudme Sø sediment core are based on bulk sediment samples and may overestimate their actual ages due to the hard-water effect (Björck & Wohlfarth 2001). However, the CaCO3 content of the sediments is very low and the ages of key-pollen, stratigraphical levels at Gudme Sø are in agreement with other independent ages from corresponding levels in Danish bogs where the dated peat is unaffected by hard water (Table 1). Hence, we consider the Gudme Sø age–depth model to be reasonably accurate and reliable within \(\pm 100 \) years. In the following, all ages are given in calendar years BC/AD.

Incipient landscape disturbance

In Fig. 3 the history of the last \(\sim 6000 \) years of soil erosion to the Gudme Sø basin is compared with contemporary changes in vegetation and land-use. Coincident increases in total NAP and taxa of cultivated plants and in SAR-min suggest a causal link between agricultural activities and soil loss.

The low SAR-min values in the late Mesolithic (\(\sim 4200–3900 \) BC) suggest a low level of soil disturbance, which is in good agreement with the pollen data. Very low NAP values (\(\sim 2\% \)) indicate that the landscape was dominated by closed-canopy forests with only a sparse field layer vegetation (Iversen 1973). During the Mesolithic, anthropogenic impact on the vegetation appears to have been negligible, and landscape disturbance was driven by natural agencies, implying that the sediment flux to the lake at this time represents a 'natural' baseline state.

In Denmark the cultural shift from the Mesolithic (hunting-fishing-gathering) to the Neolithic (farming) way of living took place \(\sim 3900 \) BC. Approximately 200 years later (\(\sim 3650–3500 \) BC) a marked increase in both SAR-min and NAP values at Gudme Sø indicate an erosional event clearly triggered by deforestation that was associated with incipient agricultural activities. At that time the first pollen types unambiguously indicative of crop cultivation and pastoral farming occurred (cereals and Plantago lanceolata, respectively). Interestingly, the data indicate that catchment disturbance and agricultural activities precede accelerated erosion rates by \(\sim 150–200 \) years, thus showing a delay or threshold effect in the system's response.

Between \(\sim 3350 \) and 3200 BC soil erosion rates increased again, although this time not correlated with pollen evidence of land clearance or intensified agriculture. Low soil erosion rates between \(\sim 3200 \) and 2650 BC and low NAP values indicate catchment stability. At about 2650 BC a renewed and short-lived (\(\sim 2650–2550 \) BC) deforestation was accompanied by intensified agricultural activities reflected in high percentages of NAP, Plantago lanceolata and cultivated taxa. Despite the apparent intensity of this brief land clearance episode, the erosional response was moderate. This might be

Table 1. 14C dates of pollen-analytical levels in Gudme Sø and three Danish raised bogs

<table>
<thead>
<tr>
<th>Pollen Type</th>
<th>Gudme Sø</th>
<th>Fuglså Mose</th>
<th>Åkær Mose</th>
<th>Holmegaard Mose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Centaurea cyanus (cornflower)</td>
<td>AD 1320</td>
<td>AD 1360</td>
<td>AD 1240</td>
<td>AD 1350</td>
</tr>
<tr>
<td>1st Secale cereale (rye)</td>
<td>170 BC</td>
<td>80 BC</td>
<td>80 BC</td>
<td>80 BC</td>
</tr>
<tr>
<td>Fagus sylvatica (beech) 3–5%</td>
<td>940 BC</td>
<td>890 BC</td>
<td>890 BC</td>
<td>920 BC</td>
</tr>
<tr>
<td>Fagus sylvatica (beech) > 0.5–1%</td>
<td>1460 BC</td>
<td>1320 BC</td>
<td>1320 BC</td>
<td>1400 BC</td>
</tr>
<tr>
<td>1st Plantago lanceolata (ribwort plantain)</td>
<td>3630 BC</td>
<td>3630 BC</td>
<td>3000 BC</td>
<td>3800 BC</td>
</tr>
<tr>
<td>Elm decline</td>
<td>3990 BC</td>
<td>3830 BC</td>
<td>3870 BC</td>
<td>3500 BC</td>
</tr>
</tbody>
</table>

Data partly from Odgaard (1994).
due to the type of land-use at a time when subsistence economy most likely was predominantly based on pastoral farming. In contrast to arable farming, such land-use implies the maintenance of permanently grass-covered pasture that would be less prone to erosion than cultivated fields (Veihe et al. 2003). After 2550 BC, low soil erosion rates indicate a long period of relative stability in the catchment area, which lasted until the middle of the Bronze Age at c. 1000 BC.

Landscape transformation

For c. 150 years, between 1000 and 850 BC, the landscape around Gudme Sø changed drastically and became far more open than previously as suggested by the increase in NAP. Extensive forest clearance and expansion of areas used for livestock grazing and crop cultivation led to comprehensive landscape disturbance and a marked increase in erosion rates to the lake. The contemporary increase in *Pediastrum* sp. indicates a larger nutrient loss from the catchment area to the lake due to soil in-wash, which enhanced the in-lake productivity. After c. 200 years, the sediment influx to the lake decreased, in agreement with the reduced anthropogenic impact on the landscape as reflected in the decreasing NAP values. At this time, the use of the lake for hemp-retting almost ceased and the percentage value of *Pediastrum* sp. declined. Between AD 950 and 1050, i.e. in the second half of the Viking Age, the pollen data suggest renewed deforestation followed by greatly intensified arable farming (elevated percentages of cultivated taxa). This marked change in land-use led to an unprecedented increase in soil erosion that likely caused eutrophication of the lake involving blooms of *Pediastrum* sp. The nutrient enrichment of the lake may have been further intensified by resumption of hemp-retting in the lake, a procedure which continued to around AD 1900.

During the Medieval period, the anthropogenic impact on the landscape increased significantly as land clearance in-

Fig. 3 A: Sediment accumulation rate of minerogenic matter (SAR-min; proxy of soil erosion rate) and non-arboreal pollen (NAP; proxy for open land). The results of the pollen analysis are presented as percentages of the total sum of pollen and spores from terrestrial plants. B: Pollen percentages of the sum of cultivated taxa. C: Pollen percentages of *Plantago lanceolata* (ribwort plantain). D: Percentages of the green alga *Pediastrum* sp. (calculated on the basis of the terrestrial pollen and spore sum). For B, C and D the dark-coloured curves are percentages and the light-coloured areas represent 10 times exaggeration.
increased and crop cultivation intensified. The cultivation of large new areas was facilitated by the introduction of new farming technology such as the mouldboard plough and ridge-and-furrow. At Gudme Sø, the intensive arable farming in the Middle Ages led to steadily increasing sediment yields. The abundance of *Pediastrum* sp. at this time suggests continued eutrophication.

In Modern time (AD 1536 to the Present) the area around the lake was further cultivated at the expense of woodland. From c. AD 1500 to 1950, NAP values increased from c. 30% to 55% indicating widespread agricultural activities predominately characterised by crop cultivation. The high and increasing human impact during this period corresponds closely to a dramatic and unprecedented increase in soil erosion, which peaked around AD 1950 contemporaneously with the highest NAP values in the entire record. A rapid and marked increase in the percentage of *Pediastrum* sp. at the beginning of the 18th century signifies the onset of a major nutrient enrichment of the lake.

Concluding remarks

The investigation of the lake sediments from Gudme Sø provides a 6000-year-record of soil erosion rates as well as contemporary pollen-inferred changes in vegetation and land-use. The study demonstrates a close correlation between changes in agricultural activity and rates of soil erosion in the catchment area of the lake. Prior to the late Viking Age, erosion to the lake occurred in pulses triggered by episodes of land clearance followed by periods of relative stability in the catchment area. After the late Viking Age, soil erosion accelerated continuously and reached a peak in the mid-20th century with erosion rates approximately 30 times higher than the pre-disturbance rates in the Mesolithic. The study demonstrates that after the introduction of agriculture, soil erosion was mainly caused by human activity rather than climate. This general result has also emerged from other lake-based studies of long-term soil erosion in Denmark (Rasmussen & Bradshaw 2005) and southern Sweden (Dearing 1991). According to current climate models we can expect an increase in precipitation, more rainfall in the winter season and a higher frequency of extreme precipitation events in the future (Christensen et al. 2006). Given these predictions, climate will undoubtedly be of growing significance as a forcing mechanism for soil erosion.

Acknowledgement

The Gudme Sø investigation is part of an archaeological research project funded by A.P. Møller og Hustru Chastine Mc-Kinney Møller Fond til almene Formaal.

References

Iversen, J. 1973: The development of Denmark’s nature since the last glacial. Danmarks Geologiske Undersøgelse V. Række C (Applied Statistics)

Odgaard, B.V. 2000: Mid- to late-Holocene land-use change and lake development at Dalbrand So, Denmark: study aims, natural and cultural setting, chronology and soil erosion history. The Holocene 15, 1150-1152.

Groundwater mapping in Denmark has high priority. It was initiated in the 1990s when the pressure on groundwater resources increased due to urban development and pollution from industrial and agricultural sources. In some areas, the groundwater mapping included survey drillings, modelling based on existing knowledge and geophysical mapping with newly developed methods that made area coverage on a large scale possible. The groundwater mapping that included development of new geophysical methods showed promising results, and led to an ambitious plan to significantly intensify the hydrogeological mapping in order to improve the protection of the Danish groundwater resources. In 1999 the Danish Government initiated the National Groundwater Mapping Programme with the objective to obtain a detailed description of the aquifers with respect to localisation, extension, distribution and interconnection as well as their vulnerability to pollution (Thomsen et al. 2004). This mapping programme covers around 40% of the area of Denmark designated as particularly valuable water abstraction areas. Water consumers finance the mapping programme by paying 0.04 € per cubic metre of consumed water. At the end of the programme in 2015, the total cost is estimated to be about 250 000 000 € with a significant part spent on geophysical mapping.

The mapping programme is administered by seven local offices under the Ministry of Environment, but most of the practical work is carried out by private consulting companies, and involves the use of geophysical survey methods, survey drillings, well logging, water sampling and hydrological mapping, as well as geological and groundwater modelling. In major parts of the particularly valuable water abstraction areas, it is important to obtain spatially dense geophysical data covering large continuous areas.

Geophysical methods used in the hydrogeological mapping

The choice of geophysical methods depends on the geological setting of the aquifers. Those of interest for drinking water are primarily found within the upper 250 m of the subsurface. The aquifers can be grouped into three main types. In
the western part of Denmark, extensive Quaternary and Pre-Quaternary sand deposits dominate. In the central part, the most important groundwater resources are located in Quaternary sand deposits often found in Quaternary valley structures deeply eroded into Palaeogene clay deposits. In the northern and eastern parts of the country, most of the important aquifers are found in Upper Cretaceous and Danian limestone.

The most important geophysical methods are electrical and electromagnetic methods, combined with reflection seismic profiling and borehole logging at selected localities. Differences in electrical properties between sandy aquifers and clay sediments favour the use of the electrical and electromagnetic methods (Sørensen et al. 2005), but the ability of seismic methods to reveal detailed internal structures within the aquifers is also important.

The most commonly used geophysical method in the groundwater mapping programme is the airborne transient electromagnetic method, SkyTEM (Sørensen & Auker 2004), which is one of the new methods that has been developed to improve and optimise groundwater mapping. The first SkyTEM groundwater mapping project was carried out in 2003. Since then the SkyTEM method has been developed further and has proved faster and more powerful than the ground-based, single-site transient electromagnetic method, TEM, which was previously widely used. The SkyTEM method is used for mapping to a maximum depth of 250–300 m. Numerous buried valleys have been mapped in Denmark by the TEM method, in particular in the central parts of the country, where highly impermeable and low-resistive Palaeogene clay layers form the lower boundaries of the aquifers and the valleys are easily detected. At the end of 2008, TEM and SkyTEM data cover an area of more than 11 000 km2 (Fig. 1A), which is about one quarter of the area of Denmark.

Electrical methods are used for near-surface mapping purposes. The pulled array continuous electrical sounding method (PACES; Sørensen 1996) has been extensively used to map layers within the upper 20–30 m. This method works well in combination with TEM measurements, and the combined methods provide data from the surface down to 200–300 m. This combination of methods has mainly been used in eastern Jylland and on Fyn. A total of around 9000 effective line kilometres of PACES data have been collected, corresponding to a coverage of more than 3000 km2 (Fig. 1B).

The continuous vertical electrical sounding method (CVES; e.g. Dahlin 1996) is used in areas where it is unnecessary to map deeper layers, and where the subsurface resistivity values are too high for the SkyTEM method. About 4000 line kilometres have been collected, mainly in the central part of Jylland and on the eastern part of Sjælland (Fig. 1C).

The reflection seismic method is also of great value as a geophysical groundwater mapping tool, particularly following the development of a land-streamer and a new vibroseis system (e.g. Vangkilde-Pedersen et al. 2006). Although the reflection seismic method is expensive, it can be successfully combined with SkyTEM measurements, and the decision about where to acquire seismic data can be based on the SkyTEM results (Jørgensen et al. 2003). Successful mapping of the outline of buried valleys and their internal structures has been based on the interpretations of seismic profiles; SkyTEM data do not allow such interpretations. The reflection seismic method has also been used successfully to map Palaeogene and Neogene sediments in the western part of Denmark (Rasmussen et al. 2007), where thick and extensive layers of sandy deposits constituting important aquifers are bounded by thinner layers of clayey deposits, and to map faults in Danian and Cretaceous limestone in the eastern part of Denmark. Around 1400 km of seismic lines have been collected, particularly in the western and central parts of Jylland (Fig. 1D).

Borehole logs are crucial for the geological and hydrological interpretation of boreholes. It is now common practice to log boreholes following survey drilling, and older water supply wells have also been logged. Particularly in areas with chalk and limestone or Neogene groundwater reservoirs log stratigraphy has provided valuable information. About 1500 boreholes have been logged.

Administration of the geophysical data

The Groundwater Mapping Programme is split up into many smaller areas to ease the administrative handling and to be able to meet priority criteria. Careful and standardised treatment of data is required to ensure that the resulting ‘patchwork’ of high and uniform quality and has no visible seams. Therefore, standards and guidelines are worked out for geophysical data acquisition, calibration of instruments, data processing, interpretation (e.g. HydroGeophysics Group 2007a) and geological modelling (Jørgensen et al. 2008).

Without a predefined system of archiving the geophysical data and modelling results, the data logistics of the groundwater mapping programme would be overwhelming. The national GEophysical Relation DAtabase (GERDA; http://gerda.geus.dk) hosted at the Geological Survey of Denmark and Greenland (GEUS), is used for archiving there geophysical data. The development of the database began more than ten years ago. The database contains geophysical data of various types such as Wenner profiles, Schlumberger soundings, pulled array continuous electrical soundings, continuous vertical electrical soundings and induced polarisation, transient electromagnetic data including the airborne SkyTEM data,
frequency domain electromagnetic data, reflection seismic profiles and borehole logs. Various kinds of 1-D models and 2-D models resulting from inversion of electrical and electromagnetic data are also saved, securing an immediate use of the results. All information about data acquisition, data processing and inversion can be stored, which facilitates reprocessing of data and makes the inversion and interpretation of data transparent.

GEUS also hosts another database (Jupiter; http://jupiter.geus.dk) for borehole data. Jupiter contains information on, for example, geological and lithological descriptions, groundwater level and water quality observations. Both the Jupiter and GERDA databases have web-based graphical user interfaces, where any user can search for and download data free of charge.

Geophysical data are handled from data processing to geological interpretation in an integrated system formed by the GERDA and the Jupiter databases and two software packages, the Aarhus Workbench and the Geoscene3D in combination with a geological model database hosted at GEUS (Fig. 2; Møller et al. in press). The Aarhus Workbench (HydroGeophysics Group 2007b) has modules for handling, processing, inverting, interpreting and visualising electrical and electromagnetic data, all combined on a common GIS platform and a common database. The Aarhus Workbench enables anybody to work with the geophysical data in the GERDA database without having to know the complicated data model of GERDA or to be able to carry out a database query. By using the GIS platform at the Aarhus Workbench it is easy to produce various types of maps compiled from the geophysical data.

The different maps are entered into the 3-D visualisation and modelling tool Geoscene3D (3-GIS, http://www.i-gis.dk) together with all the geophysical data stored in GERDA and the borehole information stored in Jupiter, and the geophysical data are ready to be used in the geological modelling process carried out in Geoscene3D.

An example of the strength of the integrated data handling system is illustrated for a 50 x 60 km² area in eastern Jylland (Fig. 3). Large parts of this area are covered by TEM soundings (c. 83 000 soundings), collected during more than 90 mapping campaigns (Fig. 3B) and with five different TEM methods (Fig. 3C) over a time span of more than ten years. Figure 3A shows a map of the surface of the deepest low-resistive model layer based on interpretation of all the TEM soundings. The deepest low-resistive model layer represents Palaeogene clay deposits except in the north-eastern corner, where it represents salty pore water in Danian limestone. The most prominent features found in the area are large number of buried valleys incised into the Palaeogene clay deposits. The buried valleys show no direct correlation to the overall topography. Even though the data have been acquired by different companies, with different instruments and methods, and at different times, the data can be combined without showing any discrepancies at survey borders.

Concluding remarks

Geophysical measurements play an important role in the National Groundwater Mapping Programme and have contributed significantly to the mapping of aquifers in Denmark. In heterogeneous regions the data density needs to be high in order to provide acceptable mapping results. Geophysical methods like TEM/SkyTEM and electrical methods can provide sufficient data density and reflection seismic profiles can resolve internal structures in specific areas in combination with detailed borehole information such as lithological descriptions, geophysical logs, data on water chem-
istry and hydraulic parameters. These data form the basis for detailed hydrogeological models. An integrated data handling system makes it possible to merge geophysical data acquired over long periods by different companies with different instruments. This is of great value for future mapping and administrative purposes.

References

Authors’ address

Geological Survey of Denmark and Greenland, Lysøgade 1, DK-8270 Højbjerg, Denmark. E-mail: ilm@geus.dk
The European Union’s Water Framework Directive aims to achieve a ‘good’ ecological status for groundwater bodies, for groundwater-dependent terrestrial ecosystems, and for aquatic surface water bodies by the year 2015. In Denmark, this goal will most likely not be fulfilled within such a short time frame due to the current poor ecological condition of Danish lakes (Søndergaard et al. 2008).

However, public concern about the protection of aquatic environments has increased, and so has interest in improving lake water quality by reducing nutrient loading. Effective and sustainable lake restoration and conservation depend on the ability to (1) point out sensitive catchment areas for the lake, (2) estimate its total water and nutrient budgets and (3) relate observed differences in seepage rates to the abundance and distribution of macrophytes in the lake and to the topography and land-use of the surrounding terrain. In seepage lakes, i.e. lakes without inlets or outlets, the influence of the surrounding terrain, regional hydrogeology and lake geometry on the overall lake water budget has been studied in some detail (Krabenhoft et al. 1990; Anderson & Cheng 1993; Cheng & Anderson, 1994; Kratz et al. 1997;...
Winter 1999; Townley & Trefry 2000). However, little effort has been made to understand and quantify how riparian zones (wetlands) surrounding lakes may control the water flow and nutrient transport to the lakes. Although groundwater inflow to seepage lakes is suspected to be smaller than inflow from drainage ditches, it may still account for a significant nutrient influx.

This paper focuses on field work carried out 2007 and 2008 at Skærsø, a lake in the upper part of the Kolding Å catchment area in south-east Jylland (Fig. 1A). Field studies at Skærsø have shown that seepage can vary on different scales in both space and time. The purpose of this study is to link measurements of lake seepage rates and lake precipitation or evaporation to the catchment hydrogeology. The project is conducted by the Centre for Lake Restoration, which includes participants from University of Southern Denmark, National Environmental Research Institute, University of Copenhagen and Geological Survey of Denmark and Greenland.

Towards a lake typology

The Centre for Lake Restoration is developing a typological classification of Danish lakes using a multidisciplinary approach that integrates interactions between groundwater and lake water. The classification is based on geological, hydrological, hydrogeological, geomorphological, botanical and chemical aspects. The botanical part focuses on plant indicator species in the lakes, and the chemical part addresses water and sediment chemistry. Two or three main lake types are currently distinguished on the basis of geological, hydrological, hydrogeological and geomorphological criteria. New lake types will probably be defined in the coming years as biological and chemical indicators are also included in the classification.

Location and setting of Skærsø

Skærsø is located a few kilometres east of the main stationary line that formed during the last glacial maximum around 20 000 years ago. The lake is situated in the upper part of the

Fig. 2. A: Preliminary model of the water balance of Skærsø. Grey arrows show influx, black arrows loss. Numbers in per cent. B: Conceptual hydrogeological model of a perched lake disconnected from the underlying aquifer.

Fig. 3. A: Mapping of lake sediments using reflection ground penetrating radar (GPR). The radar equipment is contained in the grey rubber boat. B: An example of a GPR reflection profile with a preliminary interpretation.
Kolding Å catchment area (Fig. 1A) that is dominated by glacial and glaciofluvial deposits. Around Skærsø a 2–7 m thick sand layer overlies an approximately 10 m thick clayey till that is underlain by a regional sandy aquifer. The riparian zone around Skærsø has a width of 30–50 m and a thickness of 0.1–0.5 m, and consists of organic-rich fine sand and silt. The water table of the lake varies seasonally about 0.5 m, and in the winter or early spring the riparian zone around the lake is flooded (Fig. 1B). During flooding, organic particles and solutes are transported to the lake and cause a significant decrease in the transparency of the water. Below Skærsø, the groundwater table of the regional sand aquifer is 48–49 m above sea level, whereas the surface of the lake is 66–67 m above sea level. This difference indicates that there is a hydraulic connection between the lake and the regional aquifer (see below and Fig. 1C).

The area of Skærsø is approximately 16 ha, and its average water depth is 1.5 m, with a maximum depth of about 8 m. It is characterised as a mesotrophic, low-alkaline, clear-water lake. Until the 1980s, Skærsø was a clear-water heath lake, dominated by submerged macrophytes including _Ludelia dortmanna_ that grew to a depth of 1.5 m. At the end of the 1980s, Skærsø suffered from organic-rich, acidic, unclear water, resulting in almost complete disappearance of the submerged macrophytes. After almost 19 years of unsuccessful attempts at lake restoration, the conditions in Skærsø are still deteriorating. A recent study showed that changes in light conditions in the lake are not as strongly coupled to changes in the external nutrient loading as expected (Frandsen & Stæhr 2007). Changes in the hydrology of the riparian zone have led to a seasonal flush of dissolved coloured organic matter into the lake which causes decreased water transparency, decreased light penetration and release of nutrients. However, the mechanisms that affect water transparency require further investigation.

Hydrogeological model

The hydrogeological model of the lake is characterised by the setting of shore and wetland (the riparian zone) with an upper, local groundwater aquifer in sediments of low to moderate permeability showing low hydraulic gradients. The deeper part of the lake is probably connected to a lower permeable layer with high hydraulic gradients (Fig. 1C). Because the surface of Skærsø is almost 20 m above the hydraulic head of the regional sand aquifer, we expect leakage of water from the lake through its bottom into the underlying regional aquifer.

The water supply to Skærsø is dominated by precipitation (77%) and inflow from the catchment area (19%). A limited portion (4%) comes from the shallow, local groundwater aquifer. Water flux from the lake is dominated by outflow via outlets (44%; mainly an artificial ditch) and evaporation (39%). We suggest that the remaining 17% is lost by leakage to the underlying aquifer (Fig. 2A). Thus Skærsø can be conceptualised as a perched lake, a lake which is disconnected from the underlying aquifer by an unsaturated zone between the lake bottom and the aquifer (Fig. 2B).

Ground penetrating radar

In order to investigate the structure and thickness of the sediments below the lake, a ground penetrating radar survey was carried out (Fig. 3A). Thick layers of organic-rich sediments such as lake mud (gyttja) or peat generally reduce groundwater seepage, whereas sandy sediments can promote interaction between groundwater and lake water (Fig. 3B). Ground penetrating radar can help to identify areas of potential groundwater seepage, which may then be verified using more traditional point measurements such as coring. The application of ground penetrating radar to map lake sediments is new in Denmark, and the interpretation of the radar profiles is still uncertain and needs to be checked against data from coring. However, according to our preliminary interpretation of the radar data, sandy sediments are widespread below the lake, whereas gyttja is probably restricted to a small area (Fig. 3B).

Multidisciplinary approach to estimate the groundwater flux

Seepage to or from Skærsø to the upper, local groundwater aquifer was measured using various tracers (heat, stable isotopes), direct measurements of water flux, as well as nutrients sampled from piezometer transects. The combined use of different tracers and methods at different scales provides a good understanding of the physical, chemical and biological behaviour of the entire lake. Figure 4 shows three types of field equipment that were used to quantify the flux from the local aquifer to Skærsø, and the estimated groundwater fluxes (specific discharges) to Skærsø are summarised in Table 1. The flux values estimated by the three different methods are not consistent. The highest estimated fluxes (using the Darcy

<table>
<thead>
<tr>
<th>Method</th>
<th>Flux</th>
<th>Specific discharge (m/sect)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seepage meter</td>
<td>q_m</td>
<td>$10^{-10} \times 10^{-3}$</td>
</tr>
<tr>
<td>Temperature</td>
<td>q_T</td>
<td>$10^{-7} \times 10^{-12}$</td>
</tr>
<tr>
<td>Darcy</td>
<td>q_D</td>
<td>$10^{-7} \times 10^{-12}$</td>
</tr>
</tbody>
</table>

$q_i = K \times i$, where K is the saturated hydraulic conductivity of the lake-shore sediment (i.e. fine sand and silt in the upper 2 m) equivalent to $K = 10^{-3} \times 10^{-6}$ m/sec, and i is the hydraulic gradient measured by a potentiometer to about ± 0.01.
(transect) method) are 10–100 times higher than the lowest estimated fluxes (using the temperature method). Despite this difference, the data indicate a low inflow from the shallow groundwater aquifer and, as mentioned above, we suggest that 4% of the inflow to the lake comes from the shallow aquifer, based on the average value obtained by the applied methods. We have no data on leakage through the lake bottom to the underlying aquifer, but we consider this process likely and suggest a flux value of 17% based on the difference between the other fluxes. However, this figure is highly uncertain. Especially the figure for the evaporation from the lake may be underestimated if investigations of other lakes in Jylland are considered. Nevertheless, we conclude that exchange between groundwater and lake water plays an important role in the water budget of lake Skærsø.

Acknowledgement
Villum Kann Rasmussen Fonden is gratefully acknowledged for funding the Centre for Lake Restoration (CLEAR), which is a Villum Kann Rasmussen Centre of Excellence.

References

Frandsen, M.C.S. & Stats, A.P. 2007: Differentieret analyse af jernløbet i Skærsø, 26 pp. Unpublished report, Freshwater Biological Laboratory, Biological Institute, University of Copenhagen, Helsingør, Denmark.

Geological observations in the southern West Greenland basement from Ameralik to Frederikshåb Isblink in 2008

Nynke Keulen, Anders Scherstén, John C. Schumacher, Tomás Næraa and Brian F. Windley

In 2008, the Geological Survey of Denmark and Greenland began a project in collaboration with the Bureau of Minerals and Petroleum of Greenland with the aim to publish a web-based, seamless digital map of the Precambrian bedrock between 61°30’ and 64°N in southern West Greenland. Such a map will be helpful for the mineral exploration industry and for basic research. Producing an updated digital map requires additional field work revisiting key localities to collect samples for geochemistry, geochronology and metamorphic petrology. The new data will help us to test and refine existing models.

Here we summarise some results from the 2008 field activities between Ameralik and Frederikshåb Isblink in the south (Fig. 1). The area was mapped in the 1960s and 1970s, and although the 1:100 000-scale maps are of excellent quality, they do not include more recent developments in geochronology, thermobarometry and geochemistry. A notable exception is the Fiske-næsset complex (Fig. 1), which has received considerable attention after it was first mapped (Ellingaard-Rasmussen & Mouritzen 1954; Windley et al., 1973; Windley & Smith, 1974; Myers 1985). New tectonic models have been developed since the original 1:100 000 maps were produced, and the tectonic evolution has been commonly explained in terms of terrane accretion (Friend et al. 1996). Friend’s model defines a number of boundaries that separate terranes of different age and origin and which might have contrasting tectono-metamorphic histories prior to terrane accretion. The current project area includes the northern part and proposed boundary of the Tasiusarsuaq terrane, which was amalgamated with the terranes to the north at 2.72 Ga, when regional metamorphism affected the region (Friend et al. 1996). In addition, Windley & Garde
(2009) proposed a model in which a series of blocks represent crustal sections that (except for the Sermilik block; Fig. 1) display a systematic metamorphic progression from amphibolite facies to granulite facies rocks from south to north. Each block represents a number of island and continental arcs that were amalgamated by collision into the growing North Atlantic craton. In their model, the project area consists of the Sermilik, Bjørnesund and Kvanefjord blocks, where each block represents a combination of lateral and vertical crustal growth. However, contrary to the terrane model, two blocks can have a common origin.

Quartzofeldspathic rocks

Grey tonalite-trondhjemite-granodiorite-type gneisses (TTG) have intrusive ages of 2.92–2.84 Ga that represent the main crust-generating period (Schäfer et al. 1989; Næraa & Scherstén 2008). There is growing evidence from zircon U-Pb-Hf geochronology for an older previously unrecognized Mesoproterozoic crustal component within the Tasiassuatsiaq terrane (Næraa & Scherstén, unpublished data). The extent of the older component is currently unclear, but it is apparently most widespread in the northern part of the terrane. In addition, a number of strongly deformed and veined tonalitic gneisses of presumed early Neoarchean age are younger, about 2.72 Ga, and formed from older pre-existing crust. Granite (zenu late) intrusions are variably deformed but post-date the majority of the grey gneisses. The main granite, the Ilivertalik augen granite, has feldspar megacrysts, and is

Amphibolites and metagabbro-anorthosites

Supracrustal rocks with a range of compositions occur throughout the area, but are dominated by amphibolites. Preservation varies, with readily identified primary textures in some places orthopyroxene-bearing and has been dated to 2.8 Ga (Pidgeon & Kabbee 1976; Næraa & Scherstén, unpublished data). The main volume of this granite intrudes the Sermilik block, but satellite intrusions, including the type locality at Ilivertalik mountain, are found in the Bjørnesund block, implying that these blocks were a single crustal unit by 2.8 Ga. At Ilivertalik mountain, Kalsbeek & Myers (1973) suggested that the intrusion was charnockitic and was emplaced under granulite-facies conditions. Mica schists, commonly with garnet or sillimanite, occur throughout the area. These were originally mapped as having sedimentary protoliths. To our knowledge, all recognised structures in these rocks are tectono-metamorphic, and their supracrustal origin seems to have been mostly inferred from their common relationship with amphibolites or their aluminium-rich or quartzitic compositions.
some areas and amphibolite lenses in others. The Ikkattup Nunaa belt on the islands in the IkKatoom fjord just north of Frederikalolli Ishblink (Fig. 1) is one of the best-preserved volcanic belts in the region (Andersen & Freid's 1973 Ravns Stone belt). Pillow lavas and volcanic bombs are well preserved here, and these rocks likely formed in shallow water with partly explosive volcanism. Rocks with calc-alkaline basaltic to andesitic compositions predominate (K. Szilas et al., unpublished data 2009), and analytical results suggest a convergent margin setting with an age of 2.91 ± 0.01 Ga (Nutman et al. 2004). In 2008 we discovered that some major amphibolite belts at Majoqqap Qaava (Fig. 1) contain two components, namely lithic tuff-dominated, metavolcanic rocks and massive homogeneous amphibolite sheets, which are similar to the two main components of the Ikkattup Nunaa belt, thus a common arc origin is likely.

The Fiskenæsset complex is a layered igneous complex containing ultramafic rocks, gabbros, leucogabbros, anorthosites and chromitites, which formed largely by cumulate processes (Myers 1985). In 2008, we established that the lower main ultramafic unit, best exposed at Majoqqap Qava, consists of a succession of layered dunites intruded by a major sill complex that comprises more than 25 clinopyroxene-hornblende sills, some of which are up to 10 m thick. The sills contain xenoliths of dunite, send apophyses into adjacent dunites and have discordant contacts against layered dunites. This observation means that the early history of the Fiskenæsset complex involved intrusion of a second, hydrous magma batch into earlier crystallised, olivine-rich cumulates.

Meta-gabbros and meta-anorthosites of the Fiskenæsset complex are closely associated with amphibolites of supra-
crustal origin, and they could be part of the same magmatic system. Escher & Myers (1975) believed that the Fiskenæsset complex was intrusive into the amphibolites. However, the observed contacts are tectonic, and direct evidence for primary intrusive relationships is lacking. Clearly, discordant anor-
thosite dykes cross-cut strongly deformed metagabbros within the complex (e.g. at 63.1156°N, 50.7155°W). These dykes consist of plagioclase and orthopyroxene and likely post-date all deformation.

Tectono-metamorphic development

The Qarlit Nunaat thrust forms the boundary between the Tire Brødre and Tasiusarsuaq terranes (Fig. 1; Friend et al. 1996). South of Buksefjorden there is a very high-strain, high-grade shear zone several kilometres wide between the Farringehavn and the Tasiusarsuaq terranes (Stainforth 1977; Crowley 2002). However, on either side of this shear zone, the tectono-metamorphic styles are different; to the north of Buksefjorden we found no evidence for a metamorphic or structural discontinuity. Here, rocks previously considered to be part of the Tire Brødre terrane might therefore be part of the Tasiusarsuaq terrane.

An abrupt change in metamorphic grade, from amphibolite facies just south of Grædefjord to granulite facies a little farther south, within the Tasiusarsuaq terrane, is associated with intensive shearing as predicted in the crustal block model of Windley & Garde (2009). Confirmation of the model comes from the fact that in 2008 we discovered that the boundary is occupied by a north-dipping, over 250-m-wide shear zone with a down-dip lineation, which contains augen gneisses, cataclasites and mylonites. The boundary separates amphibolite facies gneiss with granulite facies gneiss to the south from prograde amphibolite facies gneisses to the north, as also predicted by Kalsbeek (1976).

Pressure–temperature (P–T) estimates are sparse in the present field area and focused on pyroxene-garnet assemblages (amphibolites) that are restricted to upper amphibolite and granulite facies. Figure 2 shows the locations of estimated geotherms for a 40 km thick crust. The geotherms that bracket the (3.0–2.7 Ga) metamorphism suggest pressures of 5–6 kbar for the conditions of the amphibolite facies to gran-
ulite facies transition. These P–T (t = time) conditions are consistent with field observations, e.g. the only aluminosili-
cate phase found in 2008 was sillimanite, and the observed peak assemblages are consistent with conditions near the amphibolite facies and granulite facies transition at interme-
diate pressure.

Granulite-facies rocks occur more rarely than suggested on the current 1:100 000 scale maps, although, in the area around the Fiskenæsset complex granulite-facies rocks are

Fig. 3. Spinel-bearing plagioclase lherzolite showing the breakdown of olivine and plagioclase to form coronas of clinopyroxene and orthopy-
roxene. The stability limits of the plagioclase lherzolite are below c. 9 kbar and 1200°C, and the reaction would have occurred between about 700°C, 4 kbar and 970°C, 7 kbar. Location at 63.932ºN, 51.219ºW.
abundant. Some of the area designated as granulite facies contains amphibolite-facies assemblages, but is interpreted to have once attained granulate-facies conditions. However, part of the rocks previously considered retrograde from granulite-facies rocks might better be interpreted as prograde amphibolite-facies rocks that never reached granulate-facies conditions. Full analysis of the $P-T-t$ trajectories will require detailed textural and chemical analysis of these rocks.

Granite-bearing mica schists and amphibolites from Ameralik fjord and Frederikshåb Isblink suggest garnet growth at the expense of plagioclase, which is consistent with a metamorphic event dominated by pressure increase. These observations are best explained by thrust tectonics. Evidence for isostatic or near-isostatic cooling was observed in reaction textures of the plagioclase lherzolite from north of Buksefjorden described in Fig. 3. The lherzolite occurs as a boudin within a refolded zone of amphibolite and ultramafic rocks in grey gneiss. Ultramafic boudins are associated with pegmatite dykes, and this resulted in alteration of the ultramafic rocks. Similar corona textures were noted at Majoqqap Qâava and were interpreted as late igneous or early metamorphic reactions by Myers & Platt (1977).

Cataclastic structures are abundant in the area between Ameralik and Frederikshåb Isblink (e.g. Stainforth 1977). Brittle deformation occurs as an overprint of earlier ductile structures. Pseudotachylites were observed at a few localities, although cohesive fault rocks (cataclasites) are more common.

References

Authors’ addresses

N.K., A.S. & T.N.: Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; E-mail: salk@gruf.ku.dk.

J.C.S.: Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.

E.W.: Department of Geology, University of Leicester, Leicester LE1 7RH, UK.

1Present address: Department of Geology, Lund University, Sölvegatan 12, S-223 62 Lund, Sweden.
Shallow core drilling and petroleum geology related field work in East and North-East Greenland 2008

Jørgen A. Bojesen-Kofoed, Morten Bjerager and Stefan Piasecki

In recent years, both the petroleum industry and government research institutions have shown renewed interest in the petroleum potential of the High Arctic. At the same time, a range of activities are taking place, aimed at defining national borders in the Arctic Ocean following ratification of article 76 of the United Nations Convention on the Law of the Sea (UNCLOS). Parallel to the general upsurge in data acquisition activities, the United States Geological Survey has carried out a Circum-Arctic Resource Appraisal (CARA), which for North-East Greenland was published in 2007. This assessment indicated that a significant petroleum exploration potential exists on the North-East Greenland shelf, in particular in the Danmarkshavn Basin and the North Danmarkshavn Salt Province (Fig. 1). The estimated potential amounts to 31 billion barrels of oil equivalents, principally in the form of natural gas. For comparison, this roughly corresponds to one third of the original reserve of the North Sea basins. The geology of the Danmarkshavn Basin and offshore areas farther to the north is only known in broad outline, since no wells have been drilled and only reconnaissance geophysical data are available. Moreover, the extensive ice cover and the overall hostile climate of the region pose significant logistical and technical challenges to data acquisition. Clearly, this emphasises the importance of analogue studies based on the much better known geology of the onshore basins in East and North-East Greenland. In 2007/2008, the Geological Survey of Denmark and Greenland (GEUS) launched a major petroleum industry-sponsored project with the objective of updating and expanding our current understanding of the petroleum geology of East and North-East Greenland. The project is planned to continue for the next four to five years, and includes compilation of relevant existing data in the form of a geographic information system (GIS) product, supplemented by new data obtained from shallow core drilling and new field work. Below we give a brief overview of a range of field activities that took place in East and North-East Greenland in the summer of 2008.

Shallow core drilling in Jameson Land

The objective of the drilling was to recover core material from the Upper Jurassic organic-rich shale of the Katedralen Member (Hareelv Formation) to obtain a reference section of the Upper Jurassic organic-rich shale of the Katedralen Member (Hareelv Formation). Parallel to the general upsurge in data acquisition activities, the United States Geological Survey has carried out a Circum-Arctic Resource Appraisal (CARA), which for North-East Greenland was published in 2007. This assessment indicated that a significant petroleum exploration potential exists on the North-East Greenland shelf, in particular in the Danmarkshavn Basin and the North Danmarkshavn Salt Province (Fig. 1). The estimated potential amounts to 31 billion barrels of oil equivalents, principally in the form of natural gas. For comparison, this roughly corresponds to one third of the original reserve of the North Sea basins. The geology of the Danmarkshavn Basin and offshore areas farther to the north is only known in broad outline, since no wells have been drilled and only reconnaissance geophysical data are available. Moreover, the extensive ice cover and the overall hostile climate of the region pose significant logistical and technical challenges to data acquisition. Clearly, this emphasises the importance of analogue studies based on the much better known geology of the onshore basins in East and North-East Greenland. In 2007/2008, the Geological Survey of Denmark and Greenland (GEUS) launched a major petroleum industry-sponsored project with the objective of updating and expanding our current understanding of the petroleum geology of East and North-East Greenland. The project is planned to continue for the next four to five years, and includes compilation of relevant existing data in the form of a geographic information system (GIS) product, supplemented by new data obtained from shallow core drilling and new field work. Below we give a brief overview of a range of field activities that took place in East and North-East Greenland in the summer of 2008.

Shallow core drilling in Jameson Land

The objective of the drilling was to recover core material from the Upper Jurassic organic-rich shale of the Katedralen Member (Hareelv Formation) to obtain a reference section of the Upper Jurassic organic-rich shale of the Katedralen Member (Hareelv Formation). Parallel to the general upsurge in data acquisition activities, the United States Geological Survey has carried out a Circum-Arctic Resource Appraisal (CARA), which for North-East Greenland was published in 2007. This assessment indicated that a significant petroleum exploration potential exists on the North-East Greenland shelf, in particular in the Danmarkshavn Basin and the North Danmarkshavn Salt Province (Fig. 1). The estimated potential amounts to 31 billion barrels of oil equivalents, principally in the form of natural gas. For comparison, this roughly corresponds to one third of the original reserve of the North Sea basins. The geology of the Danmarkshavn Basin and offshore areas farther to the north is only known in broad outline, since no wells have been drilled and only reconnaissance geophysical data are available. Moreover, the extensive ice cover and the overall hostile climate of the region pose significant logistical and technical challenges to data acquisition. Clearly, this emphasises the importance of analogue studies based on the much better known geology of the onshore basins in East and North-East Greenland. In 2007/2008, the Geological Survey of Denmark and Greenland (GEUS) launched a major petroleum industry-sponsored project with the objective of updating and expanding our current understanding of the petroleum geology of East and North-East Greenland. The project is planned to continue for the next four to five years, and includes compilation of relevant existing data in the form of a geographic information system (GIS) product, supplemented by new data obtained from shallow core drilling and new field work. Below we give a brief overview of a range of field activities that took place in East and North-East Greenland in the summer of 2008.
the most prolific source rock in the north Atlantic region (Fig. 2). The deepest and most central part of the Jameson Land Basin at Blokelv approximately 35 km west of Constable Pynt was chosen as the drill site (Fig. 1).

The Blokelv drilling (Fig. 3) produced high quality cores (GGU 511101) with a diameter of 5.6 cm and 99.3% recovery to a depth of 233.8 m (Fig. 4). The top part from 1.72 to 10.08 m recovered homogeneous medium to fine-grained sandstone with two thin shale intervals of the Sjællandselv Member (Hareelv Formation). The Katedralen Member (Hareelv Formation) from 10.08 to 233.8 m consists of alternating sandstone and shale units; the lower boundary of the member was not reached.

Studies of the new cores from the Katedralen Member focus on the stratigraphy and age of the Hareelv Formation and lateral, contemporaneous deposits (Fig. 2). The lower boundary of the Katedralen Member is well known from the Ugleelv region and the west side of Hurry Inlet, where few, condensed beds of mudstone and fine-grained sandstone separate the Fossilbjerget and Hareelv Formations. These beds are age equivalent to the Olympen Formation in central to northern Jameson Land (\textit{P. athleta} to \textit{C. densiplicatum} Chronozones of Late Callovian to Middle Oxfordian age; Larsen & Surlyk 2003).

The deposition of laminated mudstone of the Katedralen Member began in the Late Oxfordian. The continued sedimentation of the Katedralen Member mud reaches into the Kimmeridgian and Volgian especially in eastern and southern Jameson Land (Fig. 2). During the Volgian, the coarse-grained sand of the Sjællandselv Member and Raukelv Formation was deposited in the western and central parts of the Jameson Land Basin at the same time as the Katedralen Member mud was deposited in the easternmost, apparently much deeper basin (Surlyk 2003). The youngest parts of the Katedralen Member are only known from the locality Fortet near Constable Pynt in eastern Jameson Land, where the dinoflagellate assemblage indicates an age not older than latest Middle Volgian (Fig. 2).

The upper boundary of the Katedralen Member is located where laminated mudstone is replaced by homogenous sandstone of the Sjællandselv Member. The sand slumped into the central basin from shelf-edge deltas prograding from north-west and west. This shift in deposition can be followed from west to east across the basin in a number of shallow core drillings and exposed
An extensive analytical programme to evaluate source and reservoir rock properties to establish a high-resolution dinoflagellate cyst and macrofossil biostratigraphic zonation, and assess sedimentological, diagenetic and sequence stratigraphic aspects of the penetrated succession is in progress.

Field work
Field work took place by means of helicopter-supported field teams of 2–4 persons, operating primarily out of field camps. The activities covered a wide range of geological disciplines that are briefly described below. Field teams camped at or visited locations from Kap Dalton on the Blosseville Kyst in the south to Kuhn Ø in the north (Fig. 1).

Petroleum source rocks and Cretaceous–Palaeogene stratigraphy
Petroleum source rocks are known to be present in East and North-East Greenland in a number of stratigraphic intervals ranging in age from Middle Devonian to Upper Jurassic, whereas source rocks in younger units still remain to be demonstrated. Among these various units the Upper Jurassic ‘Kimmeridge Clay equivalents’ referred to as the Hareelv, Kap Leslie and Bernbjerg Formations (Surlyk 2003) must be considered the more important ones with respect to petroleum exploration. The documentation of spatial and temporal variations in petroleum potential within these units is crucial to the prediction of the distribution of the potential in the little-known offshore basins. Upper Jurassic shale of the Bernbjerg Formation was sampled on Hold with Hope and Wollaston Forland, and potential drill sites were found at Roddygyen and Brønson Habo on Wollaston Forland. In addition, Cretaceous shale was sampled for both stratigraphic and geochemical purposes on Wollaston Forland, whereas sampling of Cretaceous deposits and drill-site identification on Hold with Hope had to be postponed due to the presence of polar bears in the area.

The stratigraphy and sedimentological development of the Cretaceous–Palaeogene succession of North-East Greenland have hitherto received relatively little attention, probably due to a general assumption that it was deposited during a period of tectonic quiescence with little change in overall basin configuration. During the field season in 2008, some effort was devoted to increasing our knowledge of the Cretaceous–Palaeogene development through sedimentological and stratigraphic sampling. Among the results was the discovery of a more than 150 m thick, unmapped succession of presumably Palaeogene sand with minor mud-

Fig. 4. Core box no. 62 with black organic rich mudstone (m), intrusive sandstone dykes (ls), and laminated heterolithic sandstone-mudstone (ls-m) of the Katedralen Member, Hareelv Formation. The diameter of the core is 56 mm.
Landscape analysis, uplift and sand provenance studies

Burial and uplift are geological processes, the magnitude and timing of which are of utmost importance in petroleum geology. Assessment of these may be undertaken by a combination of methods, including large-scale landform analysis and apatite fission track analysis, which enable us to detect ancient erosion or peneplanation surfaces as well as quantify palaeo-thermal gradients (Bonow et al. 2007). Moreover, identification of the source areas for sandy deposits through geological time is important to understand temporal dispersal patterns of sediment within the basin, and for correlation of sand units. Such provenance studies can be carried out by age determinations and detailed chemical analyses of provenance-sensitive minerals such as zircon and garnet. Since uplift and provenance studies to a large extent make use of the same type of sample material, two field teams collected samples for both purposes. Spot and profile samples were collected at a large number of locations from Milne Land and Jameson Land in the south to Wollaston Forland in the north.

Seepage studies

Experience from central West Greenland shows that when certain requirements are met petroleum seepages may be preserved in the lower parts of the Palaeogene basalt succession and in carbonate veins associated with dykes (Bojesen-Koefoed et al. 1999). The utility of the experience gained in West Greenland was tested in North-East Greenland, but with little success, since essentially no traces of petroleum were found in the volcanic rocks exposed in the region. A number of locations on Kuhn Ø and Wollaston Forland were checked, but no hydrocarbons were found. The lavas are indeed very porous, but the level of thermal alteration indicated by the zeolite facies is too low, the volcanic rocks are too thin and healed-carbonate-filled veins are nearly absent. Similar studies of the volcanic rocks on Hold with Hope were severely hampered by bad weather and polar bears, but since the geological conditions appear more favourable there and seepages have been recorded previously, further attempts should be made during future field work.

Airborne stereo-photography

Systematic stereo-photography is a valuable tool for large-scale stratigraphy and structural geology (Dueholm & Pedersen 1992). Nearly 2000 stereo-photographs were taken from a Partenavia aircraft during two sessions in (1) Jameson Land, Milne Land, Schuchert Dal, Kong Oscar Fjord, southern Trailing Ø region and (2) Kejser Franz Joseph Fjord, Gauss Halvo, Hudson Land, Gau Chame Bugt, Home Forland and the south-eastern Hold with Hope region.

Future activities in North-East Greenland

The project described here is planned to continue for the next 4–5 years, with both field work and shallow core drilling starting in the south and gradually moving northwards. In addition, an excursion to the region for sponsoring oil companies is planned for 2010. In 2008, the Bureau of Minerals and Petroleum, Greenland, published a ‘roadmap’ for a future licensing round in North-East Greenland which, pending political approval, will lead to nomination and licensing rounds in 2011–2013. In order to meet the needs of the sponsors, further special studies may be undertaken in the forthcoming years.

Acknowledgements

The staff at the Sirius Sledge Patrol stations at Daneborg and Momertug and the staff at Constable Pynt airport are thanked for their practical assistance and hospitality.

References

The bedrock geology under the Inland Ice: the next major challenge for Greenland mapping

Peter R. Dawes

Geological maps are of vital importance for documenting and advancing geological knowledge and they are a prerequisite for any meaningful evaluation of economic resources. In Greenland, mapping is taking place on the mainland – that for two centuries has been the traditional exploration target – and offshore, where only in the last decades has hydrocarbon exploration moved to the continental shelves.

Greenland with its 2 166 000 km² is the largest island in the world. However, the land is overwhelmed by ice. A central ice sheet – the Inland Ice – blankets some 81% of the country reducing rock outcrop to a coastal fringe 0 to 300 km wide (Fig. 1). The continental shelves comprise a little more than twice the area of this fringe, c. 830 000 km².

This preamble serves to emphasise that Greenland’s three physiographic units – exposed fringe, offshore and Inland Ice – are of very different size and that mapping has focused on the smallest acreage. Piecing together the composition of the largest, and hitherto unexplored, unit constitutes the next chapter of Greenland mapping.

Historical perspective and aim of this paper

In the last 25 years, great strides have been made in geological understanding as can be seen from two 1:2 500 000 maps (Escher 1970; Escher & Pulvertaft 1995). Apart from the progress recorded in the ice-free fringe, the 1995 map provides a first interpretation of the offshore, and it also includes information of sub-ice bedrock although this is but a single blob of colour at borehole GISP 2 (Fig. 1).

This paper’s aim is to provide a first graphic interpretation of the bedrock under the Inland Ice and to review data sources. Its four-page limit does not allow citation of specific sources; these will be covered in a forthcoming paper. This state-of-the-art map is naturally rudimentary in approach with all boundaries arbitrary but it has the prospect of directing attention to future data assembly.

The state of knowledge 2008

Present knowledge of sub-ice geology is based on six main sources, each discussed below with emphasis on its use in compilation of the geological map shown in Fig. 1.

Drill sites

Drilling through the ice is the ultimate way of determining substratum composition. However, the only in situ rock sampled is from borehole GISP 2 – an Archaean granitoid rock reactivated during the Palaeoproterozoic (Fig. 1). Other ice cores have revealed information about rock debris, for example, Camp Century (Fountain et al. 1981).

Nunataks

Nunataks are restricted to the Inland Ice margin within c. 30 km of the nearest land. Most expose locally known rocks and are important for piecing together structural make-up. Of importance for the new map is the 120 km long N–S string of nunataks west of Dronning Louise Land, North-East Greenland. They infer larger sub-ice occurrences of Mesoproterozoic sediments than exist on the neighbouring land.

Coast to coast correlation

Greenland’s tapering form enables Precambrian rocks to be correlated across its southern tip and, by extrapolation farther north, under the ice. The presence on both coasts of Archaean rocks flanked north and south by Palaeoproterozoic orogenic belts allows the sub-ice projection of the North Atlantic craton although its southern and northern boundaries are hidden for 250 km and 500 km, respectively. This correlation is strengthened by aeromagnetic data (Fig. 2).

The disappearance of Palaeogene extrusives on both sides of the Inland Ice might suggest a single province. However, both coasts are eruption sites connected to continental break-up but since the role of plumes and hot-spots is still unclear, basalts cannot be excluded from central Greenland.

Glacial erratics

The Inland Ice is a relic of a vast Pleistocene ice cover and the surrounding land is strewn with rocks dropped as the ice retreated. Broadly speaking, erratic suites from southern Greenland represent extensively exposed Precambrian and late Phanerzoic provinces whereas farther north, exotic Precambrian–Palaeozoic suites relate to sub-ice occurrences that are unknown or not exposed locally. Moreover, even the
Fig. 1. Geological map of Greenland with interpretation of sub-ice bedrock in terms of major provinces. Ice-free geology (in dark colour shades) modified from Henriksen (2008); dashed, grey line, division of Proterozoic crust from Dahl-Jensen et al. (2003). Small map, Canadian–Greenland correlations in the Precambrian shield showing the Palaeozoic Franklinian Basin blanketing its northern margin.
absence of particular erratics can be informative, for example, this author has no knowledge of erratics that might indicate a late Palaeozoic–Mesozoic sub-ice source.

Information from five erratic suites is incorporated into Fig. 1. Glacial drift across the Proterozoic–Phanerozoic platform of North Greenland is characterised by shield blocks – granitoid rocks, gneisses and associated rocks. Most of these need laboratory work to cast light on their age and use in reflecting hidden provinces (see 1 below) but some rocks are ready-made indicators (2, 3). Farther south, exotic suites occur on the shield terrain of the west and east coasts (4, 5).

1. The shield erratics isotopically dated are from Peary Land and environs and they suggest sub-ice Archaean crust affected by strong Palaeoproterozoic overprint.

2. Banded iron formation (BIF) characterises the Neoarchaean Committee–Melville orogen of Baffin Island and North-West Greenland. BIF erratics in North Greenland suggest an extension of this terrane far to the east.

3. Erratics of porphyries and basalt, with rare sandstone, in Washington Land indicate a sub-ice volcanic–redbed province (Fig. 3A). Preliminary isotopic work points to a Mesoproterozoic age.

4. Red sandstone and siltstone erratics around Tasiusaq and farther north in North-West Greenland point to extensive sub-ice sources (Fig. 3B).

5. Erratics along the East Greenland ice margin were emphasised by Haller (1971, fig. 48): Proterozoic sandstone and basalt, Cambrian quartzite with Skolithos and Ordovician limestone infer extensive sub-ice sources.

Detrital provenance studies

Age and palaeoflow history of detritus within sedimentary rocks – rock clasts and crystals – can be relevant for sub-ice geology. However, minerals like zircon can be transported thousands of kilometres before deposition and identifying sub-ice geology on grains alone is problematic. Thus, the clast–grain couplet of the tilloidal Neoproterozoic Moraines Formation in southern Peary Land is relevant, particularly so with its south-western provenance (Kirkland et al. 2009).

Clasts are of local Mesoproterozoic sandstone and dolerite, with less frequent granitoid rocks, BIF and porphyry, suggesting proximal sub-ice sources of Neoarchaean and Mesoproterozoic ages. Age estimates of zircons from granitoid clasts are 2.7 Ga with overprinting at 1.25 Ga. Zircon crystals range from Palaeoarchaean to Mesoproterozoic with strong Palaeoproterozoic peaks suggesting large sub-ice areas. A minor 3.3 Ga peak is an obvious link to the substratum (Victoria Fjord complex) that contains the only known rocks of this age in Greenland (Nutman et al. 2008). Moreover, the subsidiary status of these grains compared to Neoarchaean also exists in sequential Mesoproterozoic and Cambrian strata implying that Palaeoarchaean rocks form but a minor component of the complex. Kirkland et al. (2009) favour two south-western sources for Mesoproterozoic detritus: proximal sub-ice Grenville-overprinted rocks and the type Grenvillian of Labrador, more than 2000 km distant. A third source is suggested by Fig. 1: the sub-ice volcanic province that may also source the rare porphyry clasts.

Geophysics

Geophysical methods – satellite, airborne or ice based – undoubtedly have great potential for mapping the sub-ice geology. Preliminary interpretations about structure and
crustal thickness can be made from regional magnetic and gravity surveys. The power of aeromagnetics is illustrated by Verhoef et al.’s (1996) compilation of reconnaissance data that shows accurate coast to coast anomalies coinciding with tectonic segments of the Nagsugtoqidian orogen, while merging with high-resolution coastal data allows some structural subdivision of the shield (Fig. 2).

Radar and remote-sensing techniques provide physiographic details about the sub-ice landscape, for example, Legarsky et al.’s (1998) work used to locate the volcanic province in Knud Rasmussen Land (Fig. 1). Many tectonic provinces display distinct physiographical characteristics and thus 3-D imagery is vital for mapping sub-ice geology. Mountains, plains, plateaux and lowlands are not the only geological indicators, but hills and valleys affect ice dynamics and control water flow, two primary parameters for determining provenances of erratics and detrital material.

Conclusions, future research, ice recession and economic potential

A main conclusion must be that while mapping below the ice is in its infancy, the status of the GEUS databases has promising potential for planning research, whether sampling, drilling or geophysics. One dire need is for low-altitude and ice-based geophysical surveys to facilitate deductions about spatial relationships of sub-ice provinces. The new map leads to eight conclusions, but being conjectural, it raises important questions – too many to discuss in this short paper.

1. Provinces unknown in outcrop occur below the ice.
2. Where it is widest, in the north, the Inland Ice hides the most variable geology: Palaeoarchaean, Neorarchaean, Palaeoproterozoic, Mesoproterozoic and Palaeozoic provinces.
3. Archaean crust underlies Kronegrins Frederik Land but its eastern connection is unknown.
4. Whether the Ellsmere–Inglefield juvenile crust links genetically and structurally (or at all) with Palaeoproterozoic rocks within the Caledonian fold belt remains open.
5. The volcanic province of Knud Rasmussen Land reinforces the profusion of Proterozoic rift-related magmatism along the rim of the North American craton.
6. Mesoproterozoic–Ordovician rocks are widespread beyond the Caledonian front linking northern foreland outcrops to sub-ice occurrences in central East Greenland.
7. The potential for sub-ice basins of late Palaeozoic – Mesozoic age is limited.
8. The presence of Palaeogene volcanic rocks in central Greenland cannot be dismissed.

Currently, Greenland plays centre stage in the global climate debate, its recessive ice margin with spectacular, shrinking glaciers being international attractions. With this coveted popularity come startling prophesies, for example, "as its huge ice sheets begin to melt, it [Greenland] could find itself sitting on a fortune in oil and gems" (Barkham 2008). Be this as it may, before the rocks of the hidden 81% have been mapped, assessments of economic potential – often judged poor compared with neighbouring Canada despite common geology (Fig. 1) – remains equivocal.

References

The Skaergaard intrusion (Fig. 1) is probably the most studied layered gabbro intrusion in the world (Wager & Deer 1939; Wager & Brown 1968; McBirney 1996; Nielsen 2004). The intrusion is 54.5 Ma old and was formed during the Palaeogene opening of the North Atlantic Ocean, intruding into the base of the East Greenland flood basalts. The intrusion is relatively small with a volume of about 300 km³ (Nielsen 2004). Spectacular magmatic layering and systematic evolution in the compositions of liquidus phases and estimated melt compositions (e.g. Wager & Brown 1968) have made the intrusion the most studied example of the development of the ‘Fenner trend’ of iron enrichment in basaltic liquids (e.g. Thy et al. in press; Veksler in press).

The identification in the late 1980s of significant platinum-group elements (PGE) and gold (Au) occurrences in the intrusion (e.g. Bird et al. 1991; Nielsen et al. 2005) has led to continued investigation and exploration drilling. The Skaergaard intrusion is suggested to hold about 33 million ounces (1000 tonnes) of PGE and about 13 million ounces (400 tonnes) of Au (Nielsen et al. 2005). The mineralised zone is located in a 100 m thick zone of anomalous PGE and Au enrichment in the upper part of the Middle zone (Bird et al. 1991; Nielsen et al. 2005) of the Layered series. The mineralised zone consists of a succession of bowl-shaped, stratiform and very tightly controlled levels of palladium (Pd) enrichment referred to as Pd1 to Pd5 (Fig. 2; Nielsen et al. 2005). The bottom level, Pd5, is developed from margin to margin of the intrusion, whereas the overlying levels Pd4 to Pd1 are increasingly restricted in width, and the entire succession of Pd levels is only developed in the central part of the intrusion. The structure of the mineralised zone can be compared to a set of bowls with upward-decreasing diameters. Gold is always concentrated in the uppermost palladium levels or in a level above the top palladium level, irrespective of the number of developed Pd levels. More detailed descriptions are provided by Nielsen et al. (2005).

The exploration drill cores provide material and structural information from previously inaccessible parts of the intrusion (Nielsen et al. 2005). The 3-D image presented in Fig. 4 is based on drill-core information (petrographical, petrophysical, geochemical etc.) and surface information. It allows an unprecedented insight into the internal structure of the upper part of the intrusion and offers a possibility of refinement of volume estimates and quantitative modelling of the
zones and subzones of the intrusion. A constrained structural model will in turn allow evaluation and revision of crystallisation models for the basaltic liquid in the magma chamber.

3-D modelling of the intrusion and the mineralised zone

The initial aim of the 3-D modelling was a visualisation of the intrusion and the associated PGE and Au mineral occurrences. Geographical information system software was used for the compilation of the surface data used for the model. These data, together with subsurface data, were subsequently imported into modern 3-D mining and resource software (Gemcom GEMS®), which was used for the construction of the 3-D model of the intrusion and its mineralised zone.

The detailed topographical model needed for the modelling (Fig. 3) was constructed from satellite Aster data (resolution 30 × 30 m). Aster scenes and the 1:20 000 scale geological map of the intrusion and adjacent area were draped on the terrain model.

Forty-one cores with a total length of 23 425 m have been drilled since 1989. The deepest holes reached levels of c. 1200 m below the collars of the drill holes. The petrographic variation in all these cores is described in drill-hole logs in company reports in the archives of the Geological Survey of Denmark and Greenland. These logs were digitalised and compiled. The courses of the drill holes (taking azimuth and dip into account) were visualised in 3-D, and assays for PGE and Au displayed together with the petrographic information. All the information was subsequently assessed for each drill hole, and the delineation of specific lithologies and mineralised sections was interpolated manually by the geologist software operator from one drill hole to another and from drill holes to surface exposures of the mineralised zone. Triangulation surfaces were constructed mathematically by the GEMS software from the delineations and united into wire-frames that represent 3-D solids (geological bodies). The delineation and resulting solids were validated by the software. Dykes in the intrusion were also modelled as solids. Mapped-out fault planes were visualised as 3-D surfaces.

In intrusion-wide images the mineralised zone is a very narrow structure. The 3-D model is best seen ‘live’, and we have chosen, as examples, to show the initial results of the imaging of the mineralised zone in two vertical 2-D panels through the intrusion (Figs 4, 5). In Fig. 5 the mineralised zone is shown as the zone between the lower boundary of the lowermost Pd-levels (Pd5, cut-off at c. 1 gram per tonne Pd) and the top of the Au-rich part of the mineralised zone (Pd1/Au or Au + 1 levels, cut-off at c. 0.8 gram per tonne Au).
Results

The west–east section of Fig. 5A shows the mineralised zone to be bowl-shaped with a central depression of c. 400 m. The magnitude of the depression reflects that the 3-D model does not reach all the way to the margins of the intrusion. As expected, the imaging also shows that the vertical distance between the lower and upper boundaries of the mineralised zone increases towards the centre of the intrusion, in agreement with the structure of the mineralised zone proposed by Nielsen et al. (2005). The demonstrated bowl-shape of the mineralised zone, and thus the layered gabbros, corroborates the model suggesting concentric crystallisation of the gabbro on the floor, walls and below the roof of the intrusion (Nielsen 2004). The north–south section (Fig. 5B) shows the general 20° dip of the layered gabbros and the mineralised zone.

Application of 3-D modelling to the evolution of the Skaergaard intrusion

Nielsen (2004) developed a structural model for the intrusion solely on the basis of field observations and analogies. Compared to the classic and traditional accumulation models, the apparent concentric crystallisation in the 300 km³ magma chamber reduces the volumes of the most evolved zones and subzones in the intrusion and thus the proportions of the products of the crystallisation process.

Table 1. Compositions of liquids during the fractionation of the Skaergaard magma

<table>
<thead>
<tr>
<th></th>
<th>Bulk</th>
<th>SK-TFDN</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>FZc</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>% solidified</td>
<td>0.00</td>
<td>0.00</td>
<td>32.74</td>
<td>53.26</td>
<td>62.56</td>
<td>75.81</td>
<td>85.57</td>
<td>93.43</td>
<td>95.00</td>
<td>95.00</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>47.88</td>
<td>47.03</td>
<td>45.92</td>
<td>46.52</td>
<td>48.19</td>
<td>50.73</td>
<td>58.45</td>
<td>62.08</td>
<td>62.08</td>
<td>62.08</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.03</td>
<td>3.74</td>
<td>4.86</td>
<td>4.63</td>
<td>3.74</td>
<td>2.63</td>
<td>1.40</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.00</td>
<td>2.34</td>
<td>2.70</td>
<td>2.72</td>
<td>2.80</td>
<td>2.78</td>
<td>2.12</td>
<td>1.63</td>
<td>1.63</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.22</td>
<td>0.26</td>
<td>0.29</td>
<td>0.30</td>
<td>0.32</td>
<td>0.34</td>
<td>0.29</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>6.29</td>
<td>6.81</td>
<td>7.88</td>
<td>8.55</td>
<td>7.89</td>
<td>7.37</td>
<td>5.89</td>
<td>4.64</td>
<td>4.64</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>10.16</td>
<td>9.62</td>
<td>8.78</td>
<td>8.55</td>
<td>7.89</td>
<td>7.37</td>
<td>5.89</td>
<td>4.64</td>
<td>4.64</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.40</td>
<td>0.44</td>
<td>0.55</td>
<td>0.61</td>
<td>0.79</td>
<td>1.07</td>
<td>1.63</td>
<td>1.99</td>
<td>1.99</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.27</td>
<td>0.35</td>
<td>0.47</td>
<td>0.54</td>
<td>0.78</td>
<td>1.10</td>
<td>0.42</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.457</td>
<td>0.413</td>
<td>0.314</td>
<td>0.290</td>
<td>0.232</td>
<td>0.150</td>
<td>0.066</td>
<td>0.094</td>
<td>0.094</td>
<td>0.094</td>
<td></td>
</tr>
</tbody>
</table>

Based on bulk liquid SK-TFDN in Nielsen (2004). The composition of the liquid as it evolves is calculated by subtraction of average compositions of correlated LS, MBS and UBS subzones (McBirney 1989) in the mass proportions in Nielsen (2004). The spread sheet with the calculation is available on request. The composition of the liquid of a specific zone refers to the composition of the liquid at the base of the indicated zone. Bulk composition is corrected so that the end-result matches the composition of average melanogranophyres (MG). Fe₂O₃/FeO has been set at 0.15. The abbreviations are explained in Fig. 4.

The model was used for a mass balance-based estimate of the bulk composition of the intrusion, which turned out to be a composition very similar to that of the contemporaneous flood basalts. The data in Nielsen (2004) can also be used for the calculation of the line of liquid descent (LLD) of the bulk liquid (Fig. 6; Table 1). Toplis & Carroll (1995) modelled the LLD for the Skaergaard intrusion on the basis of experimental investigations. As shown in Fig. 6, the trend of the supposed Skaergaard liquid of Toplis & Carroll (1995) has the same shape as the one calculated using mass balance (Table 1). The data in Fig. 6 are projected from the SiO₂ corner above the plane in the figure, and the difference between the Toplis & Carroll (1995) and the LLD suggested here is a reflection of differences in the starting compositions.
The LLD of the Skaergaard intrusion is of utmost scientific interest. Well-constrained deviations from the expected can be reflections of processes that have not been taken into account in the modelling of the fractionation process. The lack of balance in the SiO₂ distribution, as reflected in the account in the modelling of the fractionation process. The lack of mass balance could be due to liquid immiscibility (e.g. Jakobsen et al. 2015) or dynamic conditions. Only with well-constrained mass balances and geophysical models for the shape of the magma chamber can models for the evolution of the Skærgaard intrusions be developed and the relative importance of all the suggested processes in the evolution of the melt evaluated.

All well-constrained internal boundaries and the details of the mineralised zone (bulk chemistry, lithologies and mineralogy) in the Skærgaard intrusion will be included in the 3-D model in the coming years. This will allow refinement of the 3-D distributions and volumes of different lithologies, including the mineralised zone, lead to more advanced mass-balance models for the Skærgaard intrusion, and provide more general constraints for modelling of the crystallisation and fractionation processes in basaltic magma chambers.

References

Authors’ address

Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1250 Copenhagen K, Denmark. E-mail: tfn@geus.dk

Fig. 6: Skærgaard liquid lines of descent and immiscible liquids in the (Ab + Or)–An–(Wo + En + Fs) projection from Veksler (in press), who used the LLD compositions shown in Table 1. Black dots: model liquids in the same sub-zones of the layered series calculated by mass balance (Table 1). Circles: experimental line of liquid descent (Toplis & Carroll 1995). The dashed lines show the boundary between plagioclase and pyroxene crystallisation fields at different Mg numbers (Mg/Mg + Fe; see Veksler in press for details).
The search for diamonds in Greenland has resulted in the discovery of many new dykes of kimberlite and ultramafic lamprophyre and, most importantly, in the acquisition of a wealth of chemical data on rocks and minerals representing mantle material entrained by the dyke magmas. The discovery of a diamondiferous sheet at Garnet Lake in southern West Greenland stimulated the research (Hutchison 2005). Over the past five to ten years, the Geological Survey of Denmark and Greenland together with the Bureau of Minerals and Petroleum in Greenland and international research groups have acquired, processed and interpreted data with the objective of identifying diamond-favourable regimes within the lithospheric mantle below the Archaean craton in West Greenland. Here we present mineral data from drift samples that allow us to identify where mantle conditions in terms of lithology and depth may be favourable for the occurrence of diamonds.

Neoproterozoic igneous province

The province comprises the Sarfartoq carbonatite complex and abundant dykes and sills of carbonate-rich ultramafic silicate rocks (ultramafic lamprophyre and kimberlite) that have been emplaced in late Neoproterozoic time into Archaean rocks of southern West Greenland between 65°N and 67°30’N (Larsen & Rex 1992; Nielsen et al. in press). Magma emplacement was concentrated in the Sarfartoq and Maniitsoq regions (Fig. 1), and took place from c. 600 Ma to c. 555 Ma (Secher et al. in press). The first period of magmatism appears to be confined to the Sarfartoq region while later magma pulses affected the entire region (Fig. 1). A 568 ± 11 Ma age of the Garnet Lake sheet (Hutchison & Heaman 2008) places this intrusion in the younger part of the period. Ultramafic dykes (some of which are diamondiferous) of the same age in Labrador, Canada (Tappe et al. 2006) show that the magmatism extended into the western part of Laurentia, the then contiguous continent comprising North America and Greenland. The magmatism is thought to have been triggered by incipient continental rifting. At about the same time, more pro-
nounced rifting took place at the northern margin of Laurentia and resulted in the intrusion of a prominent basaltic dyke swarm in North-West Greenland and northern Baffin Land (Dawes 2006).

Exploration and diamond discoveries

Exploration companies have used the so-called kimberlite indicator minerals in their search for host rocks for diamonds. Samples of overburden or drift (mainly till) have been collected systematically over the entire Archaean craton of southern West Greenland and processed to obtain the non-magnetic heavy mineral fraction, from which grains of mantle-derived minerals including peridotitic garnet (pyrope), eclogitic garnet, chromite (chrome-spinel), picroilmenite and chrome-diopside have been picked under a microscope. Many grains were subsequently chemically analysed to verify the visual identification and allow chemical classification. Numerous samples with diamond-indicative, high-pressure mineral compositions indicate that the Neoproterozoic province has a high prospective potential, and subsequent diamond tests have confirmed that the carbonate-rich ultramafic magmas brought up diamondiferous mantle at several localities within the province (Fig. 1). The huge amount of mineral analyses were compiled and quality controlled by Jensen et al. (2004).

In 2004 Hudson Resources Inc., guided by drift samples with an abundance of garnets derived from the diamond-stable mantle, discovered a significant amount of diamonds hosted in carbonatite-rich ultramafic rocks at Garnet Lake (Fig. 1) in the Sarfartoq region (Hutchison 2005). Continued exploration has established the presence of a 4 m wide, shallow-dipping sheet of kimberlitic rock with a promising diamond grade and diamond crystals up to 4 carats (0.8 g; Hutchison & Heaman 2008; www.hudsonresources.ca).
The Neoproterozoic lithospheric mantle

Many mineralogical and chemical investigations of mantle xenoliths hosted by the kimberlites and ultramafic lamprophyres have demonstrated that the lithospheric mantle comprises an upper section of peridotitic rock types (lherzolite, harzburgite, dunite) depleted in elements such as Ca, Fe and Ti relative to asthenospheric mantle because of extraction of large portions of basalt. The section of depleted mantle is underlain by a section with a predominance of Fe-Ti-rich, so-called fertile garnet lherzolite (references in Fig. 2). It has also been demonstrated that some xenoliths from both regions have been derived from depths clearly within the high-pressure regime where diamond is stable (references in Fig. 2).

The constraints for the Neoproterozoic geotherm have recently been improved to 38–41 mW/m², and the thickness of the Neoproterozoic lithosphere has been estimated to be at least 215 km over the entire province (Sand et al. in press).

Studies by Hutchison & Heaman (2008) indicate that the diamonds at Garnet Lake probably formed at great depths within the fertile lherzolite, i.e. at temperatures above 1200°C, and within a period of 50 million years before the transporting magma brought them to the surface. The deep lithospheric mantle provenance of the xenoliths is also stressed by Grütter & Tuer (in press), who found an unusually high proportion of high-T peridotitic garnets in drift samples from the immediate surroundings of Garnet Lake.

Garnets from deep lithospheric mantle

Garnet is the mineral that has been used most extensively in lithosphere studies and diamond exploration to reflect the temperature and pressure conditions as well as the lithology at the site where it equilibrated. The 15 000 available analyses of garnet grains from the Neoproterozoic province therefore provide excellent material with which to locate dykes that have incorporated material with deep mantle provenance similar to that recorded at Garnet Lake.

Using a chemical discrimination system devised by Grütter et al. (2004) we have selected garnets derived from depleted lherzolite (G9; Fig. 2A), fertile lherzolite (G11, Fig. 2B) and harzburgite (G10, Fig. 2C), and determined their equilibration temperatures using MnO concentrations (Grütter et al. 1999). The results shown in Fig. 2 are plotted against the latitude of the sample sites in order to reveal any regional differences. Temperatures of Garnet Lake grains and published temperature estimates based on other minerals are shown for comparison.

The diagrams show that a majority of the garnet grains derive from depths where diamond is the stable carbon phase, i.e. where the temperature is above 900°C. It appears that G11 garnets (from fertile lherzolite) mainly come from greater depths and have large populations over the entire latitude interval. This enforces the validity of current models invoking the ubiquitous presence of fertile lherzolite in the
lower lithospheric mantle section. A tendency for relatively more G11 grains above 1200°C in the Maniitsoq region is observed. Lherzolitic (G9) and harzburgitic garnets (G10) display origins in wider depth intervals, and very deep grains occur in both regions. The Garnet Lake garnets do not stand out in reaching higher temperatures than many grains in the Sarfartoq region. However, grains from several localities in the Maniitsoq region have also yielded temperatures above 1400°C. It should be mentioned that the temperature is inversely correlated with MsO concentrations, so that temperature data above 1600°C are uncertain owing to low analytical precision at low concentrations.

The range in garnet T–MsN temperature estimates is in good agreement with estimates using other methods, and the advantage of having the many additional data to establish a more statistically reliable, regional picture of mantle provenance is obvious. In addition, the drill-derived garnets provide information from areas where dykes have not been located or sampled.

Distribution of sites with high diamond potential

Figure 3 shows the extensive coverage of drill sample sites and the clusters of garnet-bearing samples (any mantle-derived kind) where dykes are common (compare Fig. 1). The deep (high–T) garnets have a narrower distribution, yet they are abundant in both regions. In order to highlight localities with a high proportion of deep garnets, an arbitrary lower limit of ten grains has been applied. Rock-sample localities with a high proportion (more than ten grains) of deep garnets have been identified and are added as supplementary information. They outline additional localities with diamond potential in the Sarfartoq region.

The distribution of localities rich in deep garnets exhibits spatial correlation with that of diamond-bearing rocks and thus supports the observation made at Garnet Lake that an abundance of deep, lower lithospheric mantle material is characteristic of diamond-bearing dykes. However, the data also demonstrate that Garnet Lake is not unique in the province in this respect and the potential for making equally promising diamond discoveries elsewhere appears to remain. One small area near Kangerlussuaq (K in Fig. 3) has not yet proved positive for diamonds, but is considered a target for further exploration. Subsurface exploration methods would be needed in that area, though, because poor exposure impedes surface recognition of significant dykes.

References

Grütter, H. & Teis, J. in press: Constraints on deep mantle tecton of Sarfartoq-area kimberlites (Greenland), based on modern thermobarometry of mantle-derived xenocrysts. Lithos.

Using spectral mixture analysis of hyperspectral remote sensing data to map lithology of the Sarfartoq carbonatite complex, southern West Greenland

Enton Bedini and Tapani Tukiainen

Remote sensing is the science of acquiring, processing, and interpreting images and related data acquired from aircraft and satellites that record the interaction between matter and electromagnetic energy (Sabins 1997). The 450–2500 nm wavelength region provides mineralogical information based on analysis of electronic absorption features in transitional metals, especially iron, and of molecular absorption features in carbonate, hydrate and hydroxide minerals (Hunt 1977). Landsat Thematic Mapper satellite images are widely used to interpret structure and geology, but due to their broad spectral bandpasses Landsat images cannot identify specific minerals. However, such details can be achieved by processing and analysing data from hyperspectral sensors. These sensors provide a unique combination of high spatial resolution and high spectral resolution imagery of the Earth’s surface unavailable from other sources (Goetz et al. 1985).

An extensive and complex suite of alkaline igneous rocks of carbonatitic and kimberlitic affinity occurs in the base-
ment of southern West Greenland (Larsen et al. 1983). One of the most important and major carbonatite intrusions is the Sarfartoq carbonatite complex (Fig. 1). This complex consists of an inner and an outer carbonatite core zone, a fenite zone and a marginal alteration zone (Secher & Larsen 1980; Secher 1986).

The objective of an on-going research project of the Geological Survey of Denmark and Greenland is to evaluate the use of spectral reflectance techniques and hyperspectral remote sensing data for lithologic mapping and mineral exploration of carbonatites over a known occurrence before applying it to unknown terrains. This short communication reports on the mapping results of spectral mixture analysis of HyMap® air-borne hyperspectral data covering an important central part of the Sarfartoq carbonatite complex (Fig. 1). A fuller discussion is presented in Bedini (2009).

Spectral reflectance properties

Reflectance spectra were acquired using an Analytical Spectral Device (ASD Inc., USA) field-portable spectrometer, which records 2151 channels within the 350–2500 nm wavelength range. The reflectance spectra of dolomite carbonatites from the Sarfartoq carbonatite display characteristic carbonate absorption features with the main CO$_3^{2-}$ absorption feature centred around 2320 nm and exhibit a broad ferrous iron absorption feature in the 1000–1300 nm wavelength region (Fig. 2). The depth of this broad ferrous absorption feature is positively correlated with the Fe$^{2+}$ content of the dolomite (Gaffey 1986). However, in reflectance spectra of ferroan carbonatites with limonitic coating, the broad ferrous absorption feature is diminished due to overlapping spectral reflectance features of ferric iron in limonite. Reflectance spectra of carbonatite rocks often display narrow, sharp absorption features at 580 nm, 740 nm, 800 nm and 870 nm, which are attributed to electronic transitions in Nd$^{3+}$ characteristic of rare-earth element-bearing minerals (e.g. Rowan et al. 1986).

An almost universal characteristic of carbonatite complexes is the presence of a distinctive metasomatic aureole in which the wall rocks have been converted to aegirine-rich and alkali amphibole-rich rocks (Secher & Larsen 1980). These metasomatic rocks are commonly called fenites and the process fenitisation. Reflectance spectra of the fenitic rocks analysed here display an Mg–OH doublet absorption feature attributed to the alkali amphibole phase present in fenite. In some cases this is associated with a shallow Al–OH absorption feature at around 2200 nm, due to sericite (Fig. 2).

Sarfartoq HyMap data

The HyMap is an airborne imaging system developed by Integrated Spectronics, Australia, and operated by HyVista Corporation. It consists of sensors located on a fixed-wing aircraft typically flown at an altitude of 2.5 km. The sensors collect reflected solar radiation in 126 bands covering the 450–2500 nm wavelength range, including the visible to near-infrared (VNIR) and short-wave infrared regions of the electromagnetic spectrum (Cocks et al. 1998). The Sarfartoq HyMap scenes are part of the HyperGreen-2002 project of the Geological Survey of Denmark and Greenland (Tukiainen & Thorning 2005). They were recorded on 9 August 2002 with 4 m nominal pixel size. The HyMap data were atmospherically corrected using the ATCOR4 model (Richter & Schlöpfer 2002).
Data analysis and results

Dark pixels (using a threshold of 5% mean reflectance) and green vegetation (using a threshold based on the normalised difference vegetation index, NDVI) were filtered out. The hyperspectral data were mean normalised (i.e. each spectrum was divided by its mean). This form of normalisation eliminates effects of different albedo in the spectral unmixing results (e.g. Berman et al. 2004). The minimum noise fraction (MNF) transformation (Green et al. 1988) was applied to the normalised data. The MNF is a form of principal components analysis but instead of ordering the data in terms of variance, the data are ordered based on the signal-to-noise ratio. In our case the first 20 MNF bands contained most of the information. Image-derived spectral endmembers representing carbonatite, fenite, and hematised gneiss were used as input to the spectral mixture analysis (Settle & Drake 1993), which was applied in the MNF space. The application of the spectral mixture analysis in a subset of MNF bands is advantageous, as noise isolated in the excluded MNF bands does not influence the spectral unmixing (e.g. Nielsen 2001). The sum of the fractions was not constrained. The fractions produced from the spectral unmixing analysis were filtered using a 3 x 3 median filter. The spectral unmixing results for the three targets of interest, carbonatite, fenite, and hematised gneiss are shown in Fig. 3A–C. A colour composite of the fractions is shown in Fig. 3D.

The unmixing analysis produced good results for the carbonatite class. The fenite zone and the marginal alteration zone are well mapped within the exposed part of the carbonatite complex along the valley. An important result of the spectral unmixing analysis is the mapping of the outer core zone of the carbonatite consisting of fenitised country rock and carbonatite dykes, distinguished by image analysis as a mixture of fenite and carbonatite (yellow in the colour composite). Other parts of the scene are spectrally dominated by the vegetation cover (grass and lichen), although a mixture of gneiss and lichen is also detectable in some parts of the area. Field validation of the remote sensing mapping results showed accurate mapping of the carbonatite outcrop. The fenite class shows some confusion with the country rocks. Numerous altered spots representing the marginal alteration zone have been detected on the plateau. However, it should...

Fig. 3. Fraction abundances produced from the spectral mixture analysis for A: Carbonatite. B: Fenite. C: Hematised gneiss. D: Colour composite of the fractions for carbonatite = red, fenite = green and hematised gneiss = blue. Yellow is a mixture of fenite and carbonatite.
be mentioned that the vegetation cover (lichen and grass) reduces its detection. In the Arctic environment of southern West Greenland green tundra vegetation and lichen constitute a major challenge for remote sensing applied to map surface mineralogy and lithology (e.g. Rizard & Arvidson 1992).

Concluding remarks
Spectral mixture analysis of HyMap hyperspectral data was used to map the outcropping rock types (carbonatite, fenite, hematized country rock) of the Sarfartoq carbonatite complex. The spectral unmixing produced good results for the carbonatite class, distinguishing the inner and outer core zones (the latter as a mixture of fenite and carbonatite) of the carbonatite complex within the study area. To our knowledge, this is the first study that reports the mapping of fenites using hyperspectral reflectance data. In a hyperspectral remote sensing study by Rowan et al. (1995) of the Iron Hill carbonatite-alkalic igneous rock complex, Colorado, USA, using data from the airborne visible/infrared imaging spectrometer (AVIRIS), fenite could not be distinguished due to low degree of rock outcrop and lower spatial resolution of the hyperspectral data.

Analysis of high spatial and spectral resolution remote sensing data provides spatially contiguous mineralogical and lithological information for outcropping carbonate complexes. In inaccessible areas it cannot easily be obtained in any other way. Such information is valuable in multi-disciplinary geological studies of carbonatites and, if combined with other types of data obtained by geophysical, geochemical and petrological techniques, it can assist in mapping and mineral exploration of carbonatite complexes. With future high-quality hyperspectral data acquired from sensors mounted on satellites (Staenz 2009), the availability and areal coverage of such datasets will increase, opening new possibilities for the use of hyperspectral remote sensing in geology.

References

Authors’ address
Geological Survey of Denmark and Greenland. Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: ebe@geus.dk
Meeting the technical challenges posed by the Arctic environment is a key issue in the development of Greenland's economy, particularly in the light of increasing interest in developing Greenland's mineral resources both on- and off-shore. This paper describes some results of the glaciological investigations carried out at Malmbjerg.

The world-class Malmbjerg molybdenum prospect (71°50´N, 24°16´W) is located in the Stauning Alper, at the confluence of Arcturus Gletscher and the larger Schuchert Gletscher (Fig. 1). The mineral occurrence was discovered in the 1950s and industrial development of the site was attempted in the following decades (Henriksen 2008), but the venture remained economically unviable, largely due to its geographical situation. However, recent technological advances and high demand on the international metal market have led to revived interest in the development of the site as an open-pit mine.

The two glaciers surrounding Malmbjerg are pivotal in the planning of the mine. In particular, surface access to the mine across Arcturus Gletscher is a prerequisite, and the effects of accumulating coarse-grained mine waste on the glacier along the eastern slope of Malmbjerg need to be investigated. Loading of the glacier by the weight of waste rock will modify the ice flow, and darkening of the glacier surface by rock dust will affect meltwater production and, through differential ablation, the elevation and morphology of the glacier surface.

Clean glaciers that become covered by debris from naturally occurring rock falls exhibit a much thinner and more homogeneously distributed debris cover, but may nevertheless provide data for comparison. Finally, surge-type glaciers are known to exist in Stauning Alper (Fig. 1), and the likelihood of a surge of Arcturus and Schuchert Gletschers during the anticipated lifetime of the mine needs to be assessed.

The results discussed below are based on data from an automatic weather station (AWS) set up on Schuchert Gletscher in April 2008 by the Geological Survey of Denmark and Greenland (GEUS), and on field observations and ground-penetrating radar surveys carried out in September 2008.

Glaciological investigations at the Malmbjerg mining prospect, central East Greenland

Michele Citterio, Ruth Mottram, Signe Hillerup Larsen and Andreas Ahlstrøm

Meteorological observations and melt modelling

An estimate of the magnitude and regime of surface meltwater production and of ablation over the glacier surface is required to properly dimension the mine’s infrastructure, to model future differential ablation under a thickening cover of dust and debris and to assess the likelihood of surges of the two glaciers. Observations from the AWS on the glacier surface allow modelling of the surface energy balance and quantifying ablation. Meltwater from the winter snow cover is important since it contributes to the total surface runoff from Arcturus Gletscher. A snow pit showed 576 mm water equivalent of accumulation (corresponding to winter balance) in early April 2008 at the AWS site, where the snow cover had completely melted by mid-June.
The AWS records air temperature and humidity in an aspirated radiation shield, as well as wind speed and wind direction, incoming and outgoing shortwave and longwave radiation, barometric pressure, snow depth, ice ablation and the ice-temperature profile at eight levels down to 10 m below the glacier surface (Fig. 2). The measured data are stored locally in the data-logger memory and are transmitted to GEUS in Copenhagen via a satellite link. The system is mounted on an aluminium tripod standing freely on the ice surface, so that the sensor height above the ice surface remains constant throughout the ablation season.

AWS data from May to August 2008 and topographic grids were used as input to the surface energy balance model of Hock & Holmgren (2005) with hourly time-steps over a grid of 50 × 50 m cells. Figure 3A shows a good match between modelled and measured ablation at the AWS site on Arcturus Glacier, where the surface roughness length for wind speed over ice was set to 1 cm in order to best simulate the on-site ablation measured from the snow pit. Since no field measurements of air temperature lapse rate or accumulation gradient were available from the area, the model was run for a range of values in order to assess the sensitivity of the model to these parameters (values of −3.5, −0.50 and −0.65°C/km and 0.0, 0.5 and 1.0 kg/m²/m of elevation/year were used). Figure 3B shows the modelled cumulative ablation from May to August 2008 over the entire modelled area with a lapse rate of −5.0°C/km and an accumulation gradient of 0.5 kg/m²/m of elevation/year. Abundant snowfall at the end of August effectively ended any further significant ablation in 2008. The amount of meltwater produced in 2008 can then be deduced by integrating the model output over the glacier area of interest.

Effects of future glacier surface darkening

Deposition of rock dust derived from blasting and handling of ore and rock waste will result in darkening of the glacier surface around Malmhøj æ, with local consequences for mobility across Arcturus Glacier.

Dust accumulation reduces albedo and initially results in significantly higher ablation rates. Ablation reaches a maximum when the effective thickness of the debris layer is attained, and then gradually decreases until the same ablation rate as clean, bare ice is observed at the critical thickness. Any further thickening of the debris layer results in lower ablation rates, which become negligible under several tens of centimetres or a few metres. Østrem (1959) first established an empirical relationship between ablation rate and thickness of the debris cover (the ‘Østrem curve’). Observed values for the effective and critical thicknesses range within 0.25–10 mm and 1.33–30 mm, respectively (Kirkbride & Dugmore 2003), with debris lithology and local climate playing significant roles. For simplicity we assumed in our model that dust...
deposition will decrease exponentially with distance from the source. Ice ablation is scaled depending on local debris thickness using an assumed Østrem curve, converted into ice-thickness change and subtracted from the digital elevation model of the preceding time step. Ice dynamics are neglected on the assumption that the glacier is in steady state during the entire modelled time, i.e. emergence and submergence velocity fields remain constant. This is a significant simplification, especially since glacier dynamics will respond to the modified ablation rates on the darkened surface. However, errors due to non-steady state were assumed to vary slowly with distance on the glacier surface, and to be of tolerable magnitude given the semi-quantitative character of this analysis. Modelled results from various dust dispersal patterns show that areas with thick debris cover will become progressively raised over surrounding cleaner ice, and that the total surface meltwater production will peak after a variable number of years; from then on it will fall towards present values.

Ice-radar survey and surge potential

A glacier surge is a strong and comparatively short-lived acceleration of ice flow lasting from a few months to a few years. It is typical of some glaciers with ice dynamics that oscillate without converging to a steady state in which accumulation in the higher parts is balanced by ice flow and ablation in the lower tongue. In the lower parts of a glacier a surge may result in the ice velocity increasing by one or even two orders of magnitude, with the surface becoming heavily crevassed and the glacier terminus possibly advancing by several kilometres. During the much longer quiescent phase following a surge, the ice at lower elevations will stagnate and waste down, while new mass builds up in the accumulation zone until the next surge event. A surge of either Arcturus Gletscher or Schuchert Gletscher would cause considerable difficulties to the mining operations.

Surge-type glaciers are known from Stauning Alper (Olesen & Reeh 1969; Jakobsen et al. 2003), and hummocky morphology with extensive ice-cored moraines suggest that both the Arcturus Gletscher and Schuchert Gletscher may be of surge type. To assess the surge potential of Arcturus Gletscher, we estimated how the present mean-ice velocity through a given cross-section of the glacier compares to the balance velocity required in a steady state.

Profiles of Arcturus Gletscher were obtained using ground-penetrating radar (Fig. 4). Processing included migration to produce a geometrically correct representation of the subsurface. Two other features could also be mapped: the cold to temperate transition surface separating cold ice from the underlying temperate ice at the pressure melting point and an englacial meltwater channel.

Analyses based on the balance velocity have commonly compared the ice flow through a cross-section to the net balance up-flow of the cross-section, but no accumulation data are yet available for the two glaciers. We therefore compared the ice flux with the net balance down-flow of the selected cross-section. Although conceptually analogous, this method is not optimal for our purposes, since it cannot detect any mass build-up in the higher reaches of the glacier which are not balanced by the present glacier flow. However, Melvold & Hagen (1998) observed the imbalance between mass supply by ice flow and surface net balance to be strong along the entire length of a surge-type glacier in its quiescent phase, and this adds confidence to our approach. The balance velocity calculated for Arcturus Gletscher through the section...
marked in Fig. 1 is 18 m per year. This can be compared with the present-day average velocity of 22 m per year obtained from feature tracking on two orthophotographs from 2005 and 2007, and using theoretical results relating surface velocity with mean velocity over a cross-section of parabolic shape (Paterson 1994). Considering the uncertainties involved, we conclude that no imbalance has been detected to suggest that a surge of Arcturus Gletscher will occur in the near future. However, instead of a single year of observations, multi-year average net mass-balance data are needed to provide a more solid assessment.

Accumulation of waste rock and ice deformation

Waste-rock accumulation on the surface of Arcturus Gletscher close to the Malmbjerg slope will affect the dynamics of the glacier, but prediction of such changes and their role is a difficult task, which requires sophisticated three-dimensional numerical models. As a preliminary approach we used simple one- and two-dimensional models to calculate the rate of ice deformation under a specific load, and how this impact could be minimised. A possible similar case may be found at the Kumtor mine in the Tien Shan Mountains in Kyrgyzstan. Gold-mine waste deposited on the Davadok Glacier over a period of 15 years caused a narrowing of the effective flow area, leading to an acceleration of the confined flow unit and increased crevassing extending to the adjacent flow unit of the glacier (Bruce et al. 2008).

In the first of our simplified conceptual models we assume the glacier to be a very viscous liquid, and that the rock waste, being thicker than naturally occurring supraglacial debris, will slowly sink into the glacier at a rate controlled by the viscosity of this liquid and the dimensions and shape of the rock particles. This model is analogous to the classical high-school experiment of dropping a ball into syrup and measuring how quickly it settles in order to determine the viscosity of the fluid. The second model assumes that all ice is displaced by the rock, and that the rate of deformation depends on the applied stress, employing a non-linear flow law commonly used in numerical models of glaciers. The two simplified models have been run using the expected timing and pattern of waste-rock accumulation, the profile of the glacier bed – models have been run using the expected timing and pattern of waste-rock accumulation, the profile of the glacier bed – both models predict the highest settling velocities at the lower end of the deposit where the ice is thickest, and the fastest times to the bed (from less than a decade to a few decades) close to the Malmbjerg slope where the ice is thinner.

Final remarks

Planning mining operations at Malmbjerg must include an evaluation of the challenges posed by the glaciers that surround it. Glaciological investigations can provide useful insight into how such challenges can be dealt with as the site is being developed. At the same time, mining sites such as Malmbjerg can become case studies of great scientific interest. However, a single year of observations may not be representative of the local climate; therefore continued operation of the AWS and further surveys are required to provide a better basis for validation of the results.

Acknowledgements

This research has been funded by Quadra Mining Ltd. Jesper Kollevoll from Quadra Mining and the team from MT Højgaard A/S at Malmbjerg base camp helped with all aspects of our field work.

References

References to be added here.

Authors’ address

 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. E-mail: mcfitg@geus.dk

76
The third Galathea expedition (Galathea 3) left Copenhagen in August 2006 for a circumnavigation of the globe with the aim of conducting more than 70 scientific programmes en route. The first geological programme took place in South Greenland and included sampling of sediment cores and seismic profiling. The aim of the study is to obtain detailed knowledge about Holocene climate changes and the glaciomarine history.

A number of cores with high sedimentation rates were collected near Narsaq in South Greenland (Fig. 1). Analyses of the cores elucidate the mid- to late Holocene climatic and environmental evolution of the area, which is highly influenced by the dynamic nature of the Greenland ice sheet and changes of the North Atlantic climate. Two major ocean currents, the cold East Greenland Current and the warmer (Atlantic Water) Irminger Current influence the deep fjords of the region, and the two currents are in turn influenced by both polar and lower latitude climate changes.

Evidence from ice cores and marine and lacustrine records in the North Atlantic region show a general climatic cooling from the mid- to late Holocene as a response to decreasing summer insolation. About 5000 years ago, a transition occurred from the Holocene thermal maximum to the Neoglacial (Dahl-Jensen et al. 1998). The cooling trend shows different timing and amplitudes in different parts of the North Atlantic region (Kaufman et al. 2004), and an apparent counterphase between the climatic conditions of western Greenland and north-western Europe during certain time periods has recently been suggested (Seidenkrantz et al. 2008).

The present study investigates climate changes in South Greenland in relation to the previously established pattern of Holocene palaeoceanographic and atmospheric changes as known from other North Atlantic palaeoclimatic studies.

Study area and methods
Glacially eroded and over-deepened fjords reaching depths of 600–700 m dissect South Greenland around Qaqortoq and Narsaq (Fig. 1). Sediment cores were collected in Bredefjord and Narsaq Sund (Fig. 1) using a gravity corer and a box corer at water depths of 270–670 m. A gravity corer with a 750 kg lead weight was used to collect sediment cores up to 6 m long with a diameter of 12 cm. Surface sediments were sampled with a cylindrical 30 cm diameter box corer. All cores were subsampled for analyses of microfossils and age determination using accelerator mass spectrometry 14C dating. The cores were split lengthwise, and magnetic susceptibility was measured.

Fig. 1. Map of South Greenland showing the main current systems and locations of investigated cores. The waters of the East Greenland Current and the warmer and more saline Irminger Current (deeper than 200 m) form a stratified water column along the coast of southern Greenland.

77
measured in high resolution using a Bartington MS2E1 probe. Nine samples of benthic foraminifera were used for 14C dating at the Leibniz Laboratory for Radiometric Dating and Isotope Research in Kiel, Germany, and the box cores were analysed for 210Pb and 137Cs content at the Gamma Dating Center, Department of Geography and Geology, University of Copenhagen. A number of basic sediment parameters were determined including sediment wet-bulk density, water content, dry-bulk density and grain-size distribution. Magnetic susceptibility measured at high resolution in general parallels the records of coarse-fraction content, and can therefore be used for correlation and as a high-resolution measure of coarse-fraction influx. In order to estimate the variation in bottom-current velocity, detailed grain-size measurements (range 0.01–1000 µm) were carried out on bulk-sediment samples using a Malvern Mastersizer 2000 laser particle-size analyser at the Department of Geography and Geology, University of Copenhagen. The weighted grain-size means of the sortable silt fraction (10–63 µm) were calculated and used as a proxy for bottom current. The number of lithogenic grains >1 mm (coarse ice-rafted debris, IRD) was counted using a dissecting microscope. The rationale for using grains >1 mm (IRD rain) is to avoid the problems associated with aeolian transport of large particles and to obtain an adequate number of grains and using grains so large that aeolian transport can be considered negligible. The IRD content is thus used as a proxy for rock fragments from melting of icebergs or sea ice deposited at the site.

The sediment-size fraction 125–1000 µm was separated by dry sieving, and from this fraction 300–400 calcareous benthic foraminifera were picked for analyses. In sediment cores with a fairly uniform sedimentation rate and limited calcium carbonate dissolution, the abundance of calcareous benthic foraminifera mainly reflects productivity related to food supply.

Fjord environment and sedimentation records

The records from the three gravity cores from Bredefjord are dominated by episodic turbidite sedimentation with very high sedimentation rates of up to 1 cm/year (based on a calibrated 14C age from Ga3-7 (435 cm depth) of c. 465 years BP) and is under influence from meltwater supply and glacier calving from the adjacent margin of the Greenland ice sheet (Fig. 1). For this study, we selected core Ga3-2 from the adjacent Narsaq Sund (Fig. 1), which represents a continuous and more slowly accumulating (c. 70 cm/1000 years) sedimentation record covering the last c. 8000 years. The chronology is based on eight 14C ages (Fig. 2). The record is characterised by a grain-size spectrum of dominantly suspension-settled mud modulated by variable bottom-current influence and IRD rain (Fig. 3). The sedimentation in this turbidite-sedimented part of the fjord system has been controlled by a number of related processes including influx of sediment-laden meltwater plumes with fine-grained sediment, iceberg calving and coarse-sediment IRD transport and strength and changes of fjord circulation/water-mass stratification by Irminger Current and East Greenland Current water masses.
penetrating into the fjord system (Ribergaard 2007). Modified Irminger water is found below c. 200 m water depths and East Greenland waters above. During the summer a local brackish meltwater-rich layer characterises the uppermost 10–15 m of the water column.

The Narsaq Sund record
The lower part of the Narsaq Sund record, deposited from about 8.0 to 4.8 ka (ka = thousand years before present), represents the Holocene thermal maximum and shows a progressive reduction in the supply of coarse-grained material, punctuated by increased influx of IRD at about 7.5–6.8 and 6.5–5.7 ka (Fig. 2). The interval 5.7–4.8 ka appears to have been characterised by markedly lower amounts of IRD, and it is suggested that this could reflect a situation in which several of the present tidewater glaciers terminated on land. The Neoglaciation appears to have started at about 4.8 ka, with peak values of IRD at about 4.6, 3.6, 2.2, 1.0, 0.7, and 0.5 ka and onward (Fig. 2). Several of these IRD events appear to be associated with enhanced melting and glacier instability during warming episodes. On the other hand, a marked increase in IRD is noted at the transition to the Little Ice Age at about 0.55 ka. This appears to correlate with the maximum ice advance of the Qassimiut lobe (Weidick et al. 2004). A threshold may have been reached during this period, with a marked advance of tidewater glaciers to a new equilibrium state leading to increased IRD deposition in the fjords.

Assemblages of calcareous benthic foraminifera show that the bottom of Narsaq Sund has been dominated by modified Irminger water during most of the Holocene. Bottom-current flow seems to have been quite sluggish before 3.2 ka, whereas the late Holocene was characterised by pronounced episodes of increased bottom-current velocity and increased productivity of calcareous benthic foraminifera (Figs 2, 3). The first episode at 3.2–2.8 ka shows no relation to IRD/meltwater proxies and the timing at 3.2 ka indicates that the episode may be related to a concurrent major reorganisation of the North Atlantic current systems (cf. Koç et al. 1995). During two following periods, at c. 2.3–1.7 ka and c. 1.3–0.8 ka, marked increases in bottom-water flow also occurred, and it is suggested that the fjord circulation during these time intervals was enhanced by an increased outflow of meltwater. The timing of the latter two events may imply a link to climate changes during the European Roman Warm Period and the Medieval Warm Period (cf. Lamb 1995).

Radiocarbon dating and palaeoecological studies show that the fjord system became ice-free at 13 to 9 ka and the East Greenland Current and the Irminger Current entered the deep and glacially eroded fjords (Weidick et al. 2004). During the recession of the Greenland ice-sheet margin from the region, large amounts of icebergs characterised the fjords, but with the onset of the Holocene thermal maximum at 8–5 ka, the temperature increased and became a few degrees higher than today. During the Holocene thermal maximum the Greenland ice sheet reached a minimum size. It became increasingly colder in southern Greenland after the thermal maximum, and with the onset of colder conditions during the Neoglacial period at 4–3 ka the glaciers re-advanced. During the Little Ice Age that culminated around AD 1600–1850, the ice margin expanded several kilometres and the Greenland ice sheet reached its maximum size after the Holocene thermal maximum (Weidick et al. 2004). During the late Holocene southern Greenland subsided 6–8 m, probably partly due to the re-advance of the Greenland ice sheet (Sparrenbom et al. 2006). At the present time most glaciers in Greenland display marked recession.

The see-saw puzzle of Holocene North Atlantic climate
Recently, Seidenkrantz et al. (2008) studied late Holocene marine records from West Greenland and found a complex relationship between the palaeoclimate of West Greenland and that of other parts of the North Atlantic region. Their study indicated that in West Greenland, the European Medieval Warm Period (c. 1.3–0.8 ka in the Greenland record) was characterised by a decreased influence of the warm...
Irminger Current and thus a relatively cool climate, whereas the colder European ‘Dark Ages’ (c. 1.5–1.3 ka in the Greenland record) appear to have been characterised by a higher meltwater runoff and consequently a warmer climate (Sedjenkrants et al. 2008). In contrast, marine, lacustrine and ice-core studies from southern Greenland (e.g. Dahl-Jensen et al. 1998; Andresen et al. 2004) do not reveal a convincing climate see-saw trend between southern Greenland and northern Europe.

Southern Greenland is located on the main track of cyclones crossing the North Atlantic region on their way towards Iceland. Therefore the area has potential to provide crucial information on major shifts in the North Atlantic atmospheric circulation and regional climate regime. The long-term pattern appears to follow climate changes consistent with patterns of East Greenland Current variability (Bond et al. 2001), which are partly related to the dominant North Atlantic oscillation (Buch 2002). This long-term see-saw pattern of the influence of the Irminger Current reported by Sedjenkrants et al. (2008) is evident in the recent North Atlantic record. Related changes in air temperature, sea-surface temperature, storm patterns, and sea-ice distribution likely explain the long-term changes and different regional climate trends in the North Atlantic region. There are, however, many unsolved questions in this puzzle, and more high-resolution records are needed from selected sites in order to investigate causes and links between regional climate variations in the North Atlantic region.

Climate change and the demise of the Norse

Norse immigrants settled around AD 985 in South Greenland where farming communities were established in the Eastern Settlement during the Medieval Warm Period. The Norse society no doubt had to cope with a number of socio-economic and environmental problems that eventually caused their disappearance after almost 500 years of existence in Greenland. One of their problems was the general temperature decrease at the transition from the Medieval Warm Period to the Little Ice Age, discussed by Mikkelsen et al. (2008). This transition may have brought their living conditions to a critical point although the manner of the demise of the Norse people is still an unsolved question. Temperature decrease, increasing storminess and sea-ice increase threatened the existence of the Norse people and presumably led them to gradually leave Greenland — perhaps for Iceland from where their pioneer ancestors originally set out.

Acknowledgements

We thank captain and crew of the Danish naval ship Våbenmenn for food, help and support during the cruise. We gratefully acknowledge financial support from the BG Fund, Det Kongelige Grønlandsfond and the Commission for Scientific Research in Greenland. This is publication no. P29 on the scientific outcome of the Galathea 3 expedition in 2006–2007.

References

Authors’ addresses

N.P. & N.M., Geological Survey of Denmark and Greenland, Øster Voldgade 10. DK-1350 Copenhagen, Denmark. Email: np@geus.dk
M.D.P., Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10. DK-1350 Copenhagen, Denmark
A.S.S., Department of Geography, University of Tromsø, N-9037 Tromsø, Norway.
Post-rift landscape development of north-east Brazil

Johan M. Bonow, Peter Japsen, Paul F. Green, Peter R. Cobbold, Augusto J. Pedroira, Ragnhild Lilletveit and Dario Chiossi

The evolution of the landscape of north-east Brazil in relation to the burial and exhumation history of both onshore and offshore areas is the focus of a research project carried out for StatoilHydro do Brasil and Petrobras from 2007 to 2009 by the Geological Survey of Denmark and Greenland in collaboration with Geotrack International. In hydrocarbon exploration it is important to understand the regional tectonic framework and thus also to consider the volumes of rocks that may have been present and then removed during the geological past. For example, the timing of hydrocarbon generation and changes in migration routes can be assessed when the timing and magnitude of uplift and erosion is known. Studies in West Greenland have demonstrated the usefulness of large-scale, low-relief, high-level landscapes as markers of uplift events, and in particular the strength of combining the denudation history from landscape analysis with the cooling history from apatite fission-track analysis (AFTA) data and the stratigraphic record (Bonow et al. 2006, 2007; Japsen et al. 2006, 2009).

In the study area, there are two plateaux with elevations up to c. 1300 m above sea level (a.s.l.). The plateaux are currently being dissected by deeply incised fluvial valleys, and escarpments separate the two plateaux. The lowlands cut across Early Cretaceous rift systems along the Atlantic margin, including the intracostal Reconcavo–Tucano-Japari (RTJ) Rift and also the Camamu Basin, of which the western margin is exposed onshore (Fig. 1). The RTJ Rift is a mature hydrocarbon province, whereas the deep-water parts of the Camamu Basin are the target of frontier exploration (e.g. Magnavita et al. 1994; Davies 1999; Cobbold et al. 2008). The post-rift sequence in the RTJ Rift and the onshore Camamu Basin is thin or absent. However, it has been estimated that up to 2000 m of sedimentary cover once was present, but has now been removed (Magnavita et al. 1994).

The Atlantic margin of Brazil is characterised by elevated plateaux cut by deeply incised valleys, but this landscape has a pattern common with many other passive continental margins with elevations from 1000 to 2000 m a.s.l. or more around the world, for example in Norway, East and West Greenland and south-east Australia. Mesozoic–Cenozoic rift systems parallel to the coast are generally present offshore...
with a transition from continental to oceanic crust farther offshore. Several aspects related to elevated, passive continental margins are controversial: the origin of the plateaux, the timing of their uplift to their present elevation and their relation to the adjacent rift systems (Japsen et al. 2009). For example, Gallagher et al. (1994) found that the almost 3 km high mountain chain Serra do Mar, near Rio de Janeiro, is the remnant of a rift shoulder from the Early Cretaceous breakup in the South Atlantic, whereas Cobbold et al. (2001) argued that these mountains were formed during Neogene block-fault tilting.

King (1967) mapped stepped surfaces (i.e. erosion surfaces at distinct levels in the landscape) through the elevated terrains along many passive continental margins, e.g. in eastern Australia, southern Africa and north-east Brazil. King used remnants of sedimentary rocks to constrain the ages of these surfaces and concluded that the main surfaces were formed during the Cenozoic, and consequently that the margins had been uplifted in that same time interval. Furthermore, King found that the highest peaks in the interior of the continents represented remnants of a pre-break-up topography. Subsequent geomorphological research into the development of the passive margins of southern Africa and eastern Australia has, however, regarded the elevated terrains along these passive margins as mainly reflecting preserved rift-shoulders (e.g. Ollier 1985), a model that is commonly used as input to thermochronological studies (e.g. Gallagher et al. 1994).

The burial and exhumation history of the study area is currently investigated by combining the cooling history from apatite fission-track analysis from both outcrop and borehole samples with the denudation history from landform analysis and the stratigraphic record. Based on field work carried out during four weeks in July and August 2007, we here report results focused on the rift systems near the Atlantic margin and on the interior highlands in north-east Brazil.

Large-scale landforms

A geomorphological analysis based on the method described by Bonow et al. (2006) has led to the identification of two major erosion surfaces (peneplains) of low, relative relief and of regional extent within the study area: a lower surface extending from near-coast areas and far into the interior (up to 500 m a.s.l., greenish colours in Fig. 1B) and a higher surface that includes the plateaux (‘planaltos’) of Chapada Diamantina (c. 1200 m a.s.l., reddish colours in Fig. 1B) and Planalto de Conquista (Fig. 1B; c. 900 m a.s.l.). Both surfaces cut across rocks of different ages and resistances and must therefore be erosional features (Fig. 2). These observations show that the surfaces were originally formed by denudation to a near-horizontal plain because even slightly tilted surfaces will be incised by fluvial valleys and the relief rejuvenated, until a new and younger peneplain is formed. The location of these surfaces near the present coast indicates that sea level was the most likely baselevel to which the surfaces graded.

After uplift of what is now the higher surface, the lower surface was developed by incision along the main rivers in the area (Figs 1, 3, 4).

The higher surface can be correlated from Chapada Diamantina to Planalto de Conquista at a slightly lower elevation (Fig. 2). It is characterised by a undulating plain with shallow and wide valleys, and it is preserved on high ground with resistant rocks. The higher surface must have developed across a larger area than that presently preserved, as the lower surface has developed at the expense of it. Escarpments often
separate the lower surface from the higher surface (Figs 3, 4). In detail, these escarpments usually coincide with bedrock boundaries, thus reflecting bedrock resistance. The valley patterns and the incision of rivers in the Recôncavo and Tucano basins also show that the lower surface is rapidly being dissected by incising rivers, due to a change in base level after formation of the lower surface.

Geological constraints

The lower surface cuts across post-rift strata within the rift and Precambrian basement outside the rift (Figs 1, 2). The formation of the surface thus post-dates the Aptian Marizal Formation (e.g. Magnavita et al. 1994). The age of the surface may, however, be further constrained by an outlier of the early Miocene, marine Sabiá Formation within the Recôncavo Basin (Fig. 1A) where this sedimentary unit has been found in deep trenches (Viana et al. 1971). This outlier testifies to a marine transgression that occurred before the formation of the lower surface because the outlier is truncated by that surface, and thus the lower surface is younger than early Miocene.

The areas where the higher surface is defined are characterised by laterites (deep weathering profiles) of Cenozoic age (Fig. 1; CPRM 2001, 2003). Both the higher surface and the laterites are currently being destroyed by erosion along the escarpments that outline the plateaus. Consequently, the laterites must have formed at the end of the erosional process that shaped the higher surface. Based on the age of the laterites we can deduce that the higher surface formed during the Cenozoic.

This time interval can be further narrowed if we take into account that the younger, lower surface was formed subsequent to the deposition of the Sabiá Formation. The age of the higher surface may thus tentatively be estimated to be Palaeogene, which implies that the landscape at that time was a peneplain close to sea level. This suggestion is in agreement with observations from similar plateaux north and south of the study area where the plateau surfaces were exposed during the Palaeogene according to stratigraphic data (Sant’Anna et al. 1997; Morais Neto et al. in press) and geochronological constraints on deep weathering (Spier et al. 2006; Lima 2008). Alternatively, both the higher and the lower surface in the study area may have formed during the Neogene, which also agrees with the Cenozoic age of the laterites. Geomorphological analysis alone cannot definitely conclude which alternative is correct, but we prefer the first alternative because it is consistent with independent constraints from outside the study area.

Fig. 3. Digital terrain model with a higher surface (HS) and a lower surface (LS) that are separated by escarpments in the Chapada Diamantina area. The higher surface forms a coherent plateau at 1200–1400 m a.s.l. (reddish) with only minor valley incisions. This plateau is presently being dissected by rivers along the escarpment, eroding down to the lower surface, here at 500–400 m a.s.l. (greenish). Escarpments are also found above the higher surface, maybe representing steps towards older surfaces at higher elevations. The arrow indicates the location and direction of the photograph in Fig. 4. Elevation data source: Jarvis et al. (2008).

Fig. 4. The lower surface with the escarpment and the higher surface in the background. See Fig. 3 for location.
Conclusions

The landscape in the study area is dominated by two main peneplains, a higher surface and a lower surface that were both formed as low-relief erosion surfaces. The higher surface developed during the Cenozoic, probably during the Palaeogene as other similar plateaus in Brazil. The lower surface formed during the Neogene after the deposition of the Sabiá Formation and an uplift event that raised the higher surface to its present elevation around 1000 m a.s.l.

The uplift resulted in rejuvenation of the relief and subsequent formation of the lower surface. Progressive backward erosion along the main rivers has resulted in escarpments that separate the two surfaces. The escarpments are pronounced at geological boundaries with large differences of erosional resistance. Even the lower surface is presently under destruction due to minor subsequent uplift. In summary, we find that the passive margin topography in the study area was shaped due to minor subsequent uplift. In summary, we find that the landscape is mainly Cenozoic in age with a history of, e.g., King (1967). A better understanding of the timing of uplift events will be achieved from apatite fusion-track data as well as the amount of exhumation involved in the formation of the erosion surfaces.

Acknowledgements

The study was funded by StatoilHydro do Brasil and Petrobras.

References

Cobbold, P.R., Meisling, K.E. & Mount, V.S. 2001: Reactivation of an escarpment in the South Atlantic. The conclusion that the landscape is mainly Cenozoic is thus in agreement with that of, e.g., King (1967). A better understanding of the timing of uplift events may be achieved from apatite fusion-track data as well as the amount of exhumation involved in the formation of the erosion surfaces.

CPRM-Geological Survey of Brazil 2001: Geological map of Brazil, 1:5 000 000 (CD-ROM).

CPRM-Geological Survey of Brazil 2003: Geological map of Brazil, 1:5 000 000 (CD-ROM).
De Nationale Geologiske Undersøgelser for Danmark og Grønland (GEUS)

Geological Survey of Denmark and Greenland Bulletin

2. Fish otoliths from the Paleocene of Denmark, 94 pp., 2003. By W. Schwarzhans. 100.00
3. Late Quaternary environmental changes recorded in the Danish marine molluscan fauna, 268 pp., 2004. By K.S. Pedersen. 200.00
8. Structural analysis of the Ruhberg Knude Glaciotectonic Complex, Vendsyssel, northern Denmark, 192 pp., 2005. By S.A.S. Pedersen. 300.00
9. Scientific results from the deepened Lopra-1 borehole, Faroe Islands, 156 pp. (11 articles), 2006. Edited by J.A. Chalmers & R. Waagstein. 240.00

Geological Survey of Denmark and Greenland Map Series

1. Explanatory notes to the Geological map of Greenland, 1:500 000, Humboldt Gletscher, Sheet 6, 48 pp., 2004. By P.R. Dawes. 280.00
Geology of Greenland Survey Bulletin (discontinued)

175 Stratigraphy of the Neill Klinter Group; a Lower – lower Middle Jurassic tidal embayment succession, Jameson Land, East Greenland, 80 pp., 1998. By G. Dam & F. Surlyk. 250.00

177 Accretion and evolution of an Archaean high-grade greisen – amphibolite complex: the Fiskerfjord area, southern West Greenland, 115 pp., 1997. By A.A. Garde. 200.00

178 Lithostratigraphy, sedimentary evolution and sequence stratigraphy of the Upper Proterozoic Lyell Land Group (Eleonore Bay Supergroup) of East and North-East Greenland, 60 pp., 1997. By H. Tirgaard & M. Sønderholm. 200.00

181 Palaeozoic geology of the Disko Bugt region, West Greenland, 179 pp. (35 articles), 1999. Edited by F. Kalsbeek. 240.00

182 Vertebrate remains from Upper Silurian – Lower Devonian beds of Hall Land, North Greenland, 80 pp., 1999. By H. Blom. 120.00

184 Collected research papers: palaeontology, geochronology, geochemistry, 62 pp. (6 articles), 1999. 150.00

185 Greenland from Archaean to Quaternary: Descriptive text to the Geological map of Greenland, 1:2 500 000, 93 pp., 2000. By N. Henriksen, A.K. Higgins, F. Kalsbeek & T.C.R. Pulvertaft. 225.00

190 The Ilulissat alkaline complex, South Greenland: status of mineralogical research with new results, 107 pp. (19 articles), 2001. Edited by H. Sørensen. 160.00

Prices are in Danish kroner exclusive of local taxes, postage and handling

Note that information on the publications of the former Geological Survey of Denmark and the former Geological Survey of Greenland (amalgamated in 1995 to form the present Geological Survey of Denmark and Greenland) can be found on the Survey’s website: www.geus.dk