Notes on ephesite, terskite, Na-komarovite, ceriopyrochlore-(Ce), joaquinite-(Ce) and other minerals from the Ilímaussaq alkaline complex, South Greenland

Evgeny I. Semenov

The Semenov (1969) memoir on the mineralogy of the Ilímaussaq alkaline massif mentioned a number of minerals under preliminary names. The present status of these minerals is reported together with new data on ephesite, which was mentioned as white mica in 1969. The mineral described as white Zr-silicate is terskite, the white Nb-silicate is the new mineral Na-komarovite, the red Mn-silicate is Mn-Fe-sepiolite, and the Mn-palygorskite should now be termed yofortierite.

Fersman Mineralogical Museum, Russian Academy of Sciences, Leninski Prospect 18, korpus 2, Moscow 117071, Russia. E-mail: semenov@minmuz.msk.su

Keywords: agpaite, ephesite, Ilímaussaq, Na-komarovite, nepheline syenites, terskite

In the memoir on the mineralogy of the Ilímaussaq alkaline massif (Semenov 1969) a number of minerals were described under preliminary names: Ce-pyrochlore, Si-pyrochlore, hydropyrochlore, Nb-rinkite, Ta-rinkite, avicennite, hydronrinkite, animikite, white Ce-silicate, white Ce-phosphate, white Nb-silicate, red Mn-silicate and white mica mineral. The present status of these minerals is reported below.

Mineralogical notes

Brown Ce-pyrochlore, Na0.5Ca0.5Ce0.5Nb2O6F, should be named ceriopyrochlore-(Ce) (formerly marignacite). The mineral described as hydropyrochlore is an altered variety of pyrochlore.

Yellow Si-pyrochlore, (Na,Ca)2(Nb,Si)2O6, is similar to the endeiolite from the Narssârssuk locality and is considered to be an impure pyrochlore as is chalcolamprite (Hogarth 1977; Clark 1993). The Si content may be a mechanical admixture, but it should be examined whether Nb can substitute for Si in this mineral group.

White Ce-phosphate, HCaCe(PO4)2·2H2O, is a Ca-bearing rhabdophane.

Rinkite group minerals with low contents of the REE were proposed in the 1969 memoir (Semenov 1969, p. 46) to be called rinkolite or lovchornite; minerals with similar contents of Nb and Ti were proposed to be called rinkite, and the Nb-rich member was proposed to be named Nb-rinkite, Na3Ca3CeNbSi4O15F3. The last-named mineral has subsequently been described as the new mineral nacareniobsite-(Ce) by Petersen et al. (1989), who also recommended that this mineral group is best described under the rinkite group. With regard to the mineral nacareniobsite, it should be pointed out that the altered varieties have low contents of Na, Ca and partly Si. Nb-rinkite would, in my opinion, have been a better name, but this name was not approved by the IMA Commission on New Minerals and Mineral Names.

Some of the chemical analyses of rinkite minerals published in 1969 contained up to 10 wt% Ta2O5 (Semenov 1969, p. 48). These samples should be re-examined.

The mineral described as hydronrinkite is an altered form of rinkite.

Joaquinite was originally described as a REE-free Ba mineral (Palache & Foshag 1932), but Semenov et al. (1967) discovered the mineral in the Ilímaussaq complex and found that it contains 22.59 wt% REE2O3. The pure Ba mineral has later been described by Wise (1982), who established two new minerals in the joaquinite group: strontiojoaquinite and bario-orthojoaquinite and also defined the REE-bearing members joaquinite and orthojoaquinite. The REE-containing mineral from the Ilímaussaq complex should, accord-
The Ilímaussaq ephesite has been found in luja-vrite pegmatites in their central hydrothermal zones where it is associated with pink cryptocrystalline albite and spherulitic white natrolite. It forms white shining flakes measuring 3 × 2 × 1 mm. The optical properties are similar to those reported for ephesite: 2V ~ 60°, γ = 1.62, α = 1.60. The unit cell dimensions have been determined as: a = 5.11, b = 8.86, c = 19.14 Å, β = 95°. There is an endothermic reaction at 900°C. It is a mica polytype 2M, but the major part (70%) of the larger flakes of Ilímaussaq ephesite belong to the unordered modification 1Md: a = 5.11, b = 8.86, c = 9.69 Å, β = 100°, that is with half length of the c axis. The mineral thus displays two or three structural modifications.

Mn and Fe members of sepiolite (X-ray main reflection 12 Å) and palygorskite (10 Å) are of widespread occurrence in the Ilímaussaq as well as the Lovozero complexes. The Mn analogue of palygorskite has been described as yofortierite by Perrault et al. (1975). The Na-Mn analogue was described as raite (Merkov et al. 1973) and the Fe variety as tuperssuatsiaite (Karup-Møller & Petersen 1984). Of these minerals yofortierite and tuperssuatsiaite occur in the Ilímaussaq complex.

The red Mn silicate (Semenov 1969, p. 103) has been found to be Mn-Fe-sepiolite, Mn$_2$Fe$_2$Si$_6$O$_{15}$(OH)$_2$6H$_2$O.

Discarded minerals. Some minerals mentioned by Semenov (1969) have later been discarded from the list of Ilímaussaq minerals. They are animikite (p. 22), vudjavrite (p. 52) and zirfesite (p. 77). According to Clark (1993), animikite is a mixture of silver, galena...
and nickeline, vudjavrite is an amorphous alteration product of lovchorrite (altered rinkite), and zirfesite is an alteration product of eudialyte.

The mineral mentioned by Semenov (1969, p. 26) as maucherite has been shown to be westerveldite (Karup-Møller & Makovicky 1977; Oen et al. 1977).

References

