LA-ICP-MS Laboratory

The laser ablation inductively coupled plasma mass spectrometry
(LA ICP-MS) facility at GEUS is designed to address different problems in Earth and Natural Sciences through the generation of isotopic, elemental and U-Th-Pb geochronology information.

Types of analyses

The LA-ICP-MS facility at GEUS mainly performs U-Th-Pb age determination of accessory minerals and trace element analysis of mineral grains and bulk geological samples.

Types of analyses carried out are:

Analyses are performed on a routine basis for detrital zircon provenance analysis, formation ages of magmatic and metamorphic rocks, structural and tectonic framework studies and for ore formation investigations. Where core-rim (or other significant growth domains) is observed it is sometimes possible to obtain multiple ages representing events recorded in the core or rim of a single crystal. Analyses are typically performed on mineral separates embedded in epoxy mounts or on thin sections (typically 30-100 µm thick).

Zircon

zircon crystal with laser ablation pit in centre

Dating of accessory minerals (other than zircon) is a powerful tool for understanding geological processes that may not be recorded in the zircons, e.g. metamorphic or hydrothermal events or the provenance of sediments derived from metamorphic terrains. Thus, we offer U-Th-Pb dating analyses of the mineral phases:

  • Zircon
  • Rutile
  • Titanite
  • Baddeleyite
  • Apatite
  • Xenotime
  • Monazite
  • Allanite

Analyses are performed on request and can include one (single phase dating) or several (multi-phase dating) of the minerals listed above. Please consult the laboratory staff for further information. We are always open to requests concerning dating of other mineral than listed, like 
Uraninite, Thorithe, Perovskite, Eudialyte, Steenstrupine ect. 

Minerals that can be dated by the U-Th-Pb method (see above) also contain trace elements that can contribute with information about the conditions of formation or alterations that the mineral/rock has experienced.
Concurrently obtaining an age as well and the trace elements content from the very same analysis location offers the opportunity to use these data for a more spatially exact geological interpretation of the mineral or rock.
This analysis method is used for provenance or metamorphic studies, and is a powerful alternative when mineral grains are small in size to maximize data output. 

Almost any solid material is in principle possible to analyse by LA-ICP-MS.
We specialize in the analysis of inorganic, naturally occuring materials as well as synthetic products, e.g.:

  • rocks
  • minerals
  • gem stones
  • Biological materials (like otoliths, shells, horns, or fish scales)
  • Synthetic materials like glasses and pressed powder pellets
  • Archeological samples (e.g. rock axes, ceramics)

Analysis of almost any solid material is in principle possible to perform by LA-ICP-MS, but the following materials are not routinely performed at GEUS: metals including sulfide minerals, bones, teeth, paints and plastics, soft tissues and hair.

NB: Major element composition is typically used as internal standard for concentration determinations. Thus, to quantify data the concentration of at least one major element constituent (e.g. Si, Ca or Mg) that is to be used as internal standard must be known prior to laser analysis. Typically, this is obtained by electron probe micro-analysis (EPMA), XRF or akin technique.

Otolit
Otolith to be analyzed for trace elements content. 

When minerals crystallize from a melt or a fluid phase, relics are commonly trapped and preserved as fluid (or melt) inclusions several micrometers in size. Such inclusions are a main and direct source of chemical information about e.g. late-stage magma crystallization, crustal fluid flow, hydrothermal transport processes or ore formation, and can be analyzed by LA-ICP-MS to obtain the trace element content. Methods for fluid inclusion analysis has been established recently, and we are always open for new procedures for the quantitative chemical analysis of such inclusions.

undefined

Classification of fluid inclusions (from Fall et al., 2011)

Prior to LA-ICP-MS analysis, usually the samples have been examined by microtextural and microthermomethic analysis to determine the internal age relationship between the potential different generations of fluid inclusions, and to determine the formation-temperature, the salt content in the inclusions and the composition of fluid, gas, salt and crystallised material (melt) in the inclusion.

undefined

Equipment used for the microthermometry analyses of fluid inclusions

Purpose and key instruments

 

  • Offer researchers, companies, students and organizations to use our expertise and instrumentation to address problems in Earth and other sciences.
  • Develop new applications of laser ablation ICP mass spectrometry for basic research and applied science.
  • Provide researchers and students the opportunity to obtain “hands-on” experiences with the LA-ICP-MS analytical techniques used while acquiring data.

The facility operates an Element 2 single-collector magnetic sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) from Thermo-Fisher Scientific that is connected to one of our laser ablation system (NWR213 or UP213) from Elemental Scientific Lasers.

  • Quantitative analyses can be obtained for most elements in the mass range from 7Li to 238U.
  • Low ppm level trace element determinations in most solid materials at spatial resolutions of 15 to 150 microns (spot or line).
  • Detection limits in the order of ppb to a few ppm
  • Laser beam diameters of 5-150 µm

undefined

Sample preperation for LA-ICP-MS analysis

The GEUS Staff have extensive experience in preparing samples in our sample preparation laboratories from crushing of the raw rock material to the fabrication of polished mounts. Available mineral separation techniques include heavy liquid separation, water-shaking table, Frantz electro-magnetic separator and high-quality picking microscopes. External users can bring prepared samples (please consult the staff for details).

Imaging or qualitative analysis using GEUS' scanning electron microscopy (SEM) or optical microscopy facilities usually is an integrated part of the preparations for LA-ICP-MS analysis. 

Our different sample holders offer a number of options for mounting sample material of different size and shape. In most cases the sample material is prepared by mounting mineral grain separates in standard 1” epoxy mounts or as petrographic thin or thick sections for in-situ analysis. Sample sizes that can be accommodated:

  • Round mounts of 10, 25 (1”), 30 and 40 mm in diameter
  • Standard size (ca. 20x30 mm) thin or thick sections
  • Odd sized and shaped samples of <80 mm in size may be accommodated. please ask for further information.

 

Materials to be analyzed must be dry, cleaned and free of any kind of coating (e.g. carbon, gold, etc.). Any carbon coating from previous microprobe analysis should be removed. Gold coating must be removed thoroughly as residues of gold coating can severely affect LA-ICP-MS data quality.

Preferably, the surface of the material should be sufficiently polished. Samples do not need to have surface preparation, but data quality improves considerably if the samples are polished.

The microscope on the laser instrument is not as good as some of the dedicated microscopes one might be accustomed to, and locating specific spots to analyze can be tricky and time-consuming, in particular on polished sections and for fluid inclusions. Thus, prior to analysis users are strongly encouraged to bring along “sample map” images that will help maneuvering on the surface of the sample. For polished sections optical microscopy images are often required in addition to e.g. BSE, CL or equivalent imaging. Pen markings should be on the lower (glass) side of the thin sections because the section side is cleaned before analysis. The imaging can usually be carried out at the SEM or optical microscopy laboratories at GEUS. 

Data processing

'Appropriate software is available for the data reduction of all types of LA-ICP-MS analyses performed. It is possible for external users to carry out their own analytical work and subsequent data reduction after receiving appropriate training by our experienced laboratory staff.

Publications from project collaborations


Petrology and mineralogy
:

  • Baden, K., Bagas, L., Kolb, J., Thomsen, T.B., Waight, T.E., 2018. The Amitsoq Plutonic Suite - a newly discovered suite in the Ketilidian Orogen. Presented at the 33rd Nordic Geological winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 102.
  • Baden, K., Kolb, J., Thomsen, T.B., 2014. Dating a gold-bearing hydrothermal event, in the Paleoproterozoic Tasiilaq area, Nagssugtoqidian Orogen, SouthEast Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 51.
  • Berger, A., Kokfelt, T.F., Kolb, J., 2014. Exhumation rates in the Archean from pressure–time paths: Example from the Skjoldungen Orogen (SE Greenland). Precambrian Research 255, 774–790. https://doi.org/10.1016/j.precamres.2014.04.011
  • Cornell, D.H., Pettersson, A., Whitehouse, M.J., Schersten, A., 2009. A New Chronostratigraphic Paradigm for the Age and Tectonic History of the Mesoproterozoic Bushmanland Ore District, South Africa. Economic Geology 104, 385–404. https://doi.org/10.2113/gsecongeo.104.3.385
  • de Souza, Z.S., Kalsbeek, F., Deng, X.-D., Frei, R., Kokfelt, T.F., Dantas, E.L., Li, J.-W., Pimentel, M.M., Galindo, A.C., 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences 68, 68–96. https://doi.org/10.1016/j.jsames.2015.10.006
  • Doe, M.F., Jones, J.V., Karlstrom, K.E., Thrane, K., Frei, D., Gehrels, G., Pecha, M., 2012. Basin formation near the end of the 1.60–1.45 Ga tectonic gap in southern Laurentia: Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga supercontinent configurations. Lithosphere 4, 77–88. https://doi.org/10.1130/L160.1
  • Dyck, B., Reno, B.L., Kokfelt, T.F., 2015. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos 220–223, 253–271. https://doi.org/10.1016/j.lithos.2015.01.024
  • Dziggel, A., Kokfelt, T.F., Kolb, J., Kisters, A.F.M., Reifenröther, R., 2017. Tectonic switches and the exhumation of deep-crustal granulites during Neoarchean terrane accretion in the area around Grædefjord, SW Greenland. Precambrian Research 300, 223–245. https://doi.org/10.1016/j.precamres.2017.07.027
  • Ekwueme, B., Kalsbeek, F., 2015. U-Pb geochronology of metasedimentary schists in Akwanga area of north central Nigeria and its implications for the evolution of the Nigerian basement complex. Global Journal of Geological Sciences 12, 21. https://doi.org/10.4314/gjgs.v12i1.3
  • Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261–270. https://doi.org/10.1016/j.chemgeo.2008.07.025
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Gaucher, C., Frei, R., Chemale, F., Frei, D., Bossi, J., Martínez, G., Chiglino, L., Cernuschi, F., 2011. Mesoproterozoic evolution of the Río de la Plata Craton in Uruguay: at the heart of Rodinia? International Journal of Earth Sciences 100, 273–288. https://doi.org/10.1007/s00531-010-0562-x
  • Hennig, D., Lehmann, B., Frei, D., Belyatsky, B., Zhao, X.F., Cabral, A.R., Zeng, P.S., Zhou, M.F., Schmidt, K., 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113, 408–422. https://doi.org/10.1016/j.lithos.2009.04.031
  • Hollis, J.A., Frei, D., Gool, J.A.M. van, 2006. Using zircon geochronology to resolve the Archaean geology of southern West Greenland. Geological survey of Denmark and Greenland Bulletin 10, 49–52, ISSN:1604-8156.
  • Kalsbeek, F., Affaton, P., Ekwueme, B., Frei, R., Thrane, K., 2012. Geochronology of granitoid and metasedimentary rocks from Togo and Benin, West Africa: Comparisons with NE Brazil. Precambrian Research 196–197, 218–233. https://doi.org/10.1016/j.precamres.2011.12.006
  • Keulen, N., Næraa, T., Kokfelt, T.F., Schumacher, J.C., Scherstén, A., 2010. Zircon record of the igneous and metamorphic history of the Fiskenæsset anorthosite complex in southern West Greenland. Geological Survey of Denmark and Greenland Bulletin 20, 67–70, ISSN:1604-8156.
  • Keulen, N., Schumacher, J.C., Næraa, T., Kokfelt, T.F., Scherstén, A., Szilas, K., van Hinsberg, V.J., Schlatter, D.M., Windley, B.F., 2014. Meso- and Neoarchaean geological history of the Bjørnesund and Ravns Storø Supracrustal Belts, southern West Greenland: Settings for gold enrichment and corundum formation. Precambrian Research 254, 36–58. https://doi.org/10.1016/j.precamres.2014.07.023
  • Klausen, M.B., Szilas, K., Kokfelt, T.F., Keulen, N., Schumacher, J.C., Berger, A., 2017. Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt, SW Greenland. Precambrian Research 302, 50–73. https://doi.org/10.1016/j.precamres.2017.09.014
  • Knudsen, C., Gool, J.A.M. van, Østergaard, C., Hollis, J.A., Rink-Jørgensen, M., Persson, M., Szilas, K., 2007. Gold-hosting supracrustal rocks on Storø, southern West Greenland: lithologies and geological environment. Geological survey of Denmark and Greenland Bulletin 13, 41–44, ISSN:1604-8156.
  • Kokfelt, T.F., Næraa, T., Thrane, K., Bagas, L., 2016. New zircon U-Pb and Hf isotopic constraints on the crustal evolution of the Skjoldungen region, South-East Greenland. Geological Survey of Denmark and Greenland Bulletin 35, 55–58, ISSN:1604-8156.
  • Köksal, S., Möller, A., Göncüoglu, M.C., Frei, D., Gerdes, A., 2012. Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey). Contributions to Mineralogy and Petrology 163, 725–743. https://doi.org/10.1007/s00410-011-0696-2
  • Köksal, S., Toksoy-Köksal, F., Göncüoğlu, M.C., Möller, A., Gerdes, A., Frei, D., 2013. Crustal source of the Late Cretaceous Satansarı monzonite stock (central Anatolia – Turkey) and its significance for the Alpine geodynamic evolution. Journal of Geodynamics 65, 82–93. https://doi.org/10.1016/j.jog.2012.06.003
  • Kolb, J., Kokfelt, T.F., Dziggel, A., 2012. Geodynamic setting and deformation history of an Archaean terrane at mid-crustal level: The Tasiusarsuaq terrane of southern West Greenland. Precambrian Research 212–213, 34–56. https://doi.org/10.1016/j.precamres.2012.04.010
  • Lebrun, E., Árting, T.B., Kolb, J., Fiorentini, M., Kokfelt, T., Johannesen, A.B., Maas, R., Thébaud, N., Martin, L.A.J., Murphy, R.C., 2018. Genesis of the Paleoproterozoic Ammassalik Intrusive Complex, south-east Greenland. Precambrian Research 315, 19–44. https://doi.org/10.1016/j.precamres.2018.06.016
  • Meinhold, G., Kostopoulos, D., Frei, D., Himmerkus, F., Reischmann, T., 2010a. U–Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. International Journal of Earth Sciences 99, 813–832. https://doi.org/10.1007/s00531-009-0425-5
  • Meinhold, G., Reischmann, T., Kostopoulos, D., Frei, D., Larionov, A.N., 2010b. Mineral chemical and geochronological constraints on the age and provenance of the eastern Circum-Rhodope Belt low-grade metasedimentary rocks, NE Greece. Sedimentary Geology 229, 207–223. https://doi.org/10.1016/j.sedgeo.2010.06.007
  • Müller, S., Dziggel, A., Sindern, S., Kokfelt, T.F., Gerdes, A., Kolb, J., 2018. Age and temperature-time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland: Constrained from U-Pb dating of zircon, monazite, titanite and rutile. Precambrian Research 314, 468–486. https://doi.org/10.1016/j.precamres.2018.07.002
  • Næraa, T., Scherstén, A., 2008. New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geological survey of Denmark and Greenland Bulletin 15, 73–76, ISSN:1604-8156.
  • Næraa, T., Scherstén, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F., Whitehouse, M.J., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630. https://doi.org/10.1038/nature11140
  • Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y., Götze, J., Häger, T., Kröner, A., Valley, J.W., 2008. Zircon M257 - a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research 32, 247–265. https://doi.org/10.1111/j.1751-908X.2008.00914.x
  • Nielsen, L.S., Rosing, M., Kokfelt, T.F., Thomsen, T.B., 2014. Rutile and Zircon Geochronology and Geochemistry of Banded Rocks from the Isua Supracrustal Belt, SW Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 91.
  • Pamoukaghlián, K., Gaucher, C., Frei, R., Poiré, D.G., Chemale, F., Frei, D., Will, T.M., 2017. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton. Journal of South American Earth Sciences 79, 443–458. https://doi.org/10.1016/j.jsames.2017.09.004
  • Polat, A., Appel, P.W.U., Frei, R., Pan, Y., Dilek, Y., Ordóñez-Calderón, J.C., Fryer, B., Hollis, J.A., Raith, J.G., 2007. Field and geochemical characteristics of the Mesoarchean (∼3075Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Research 11, 69–91. https://doi.org/10.1016/j.gr.2006.02.004
  • Polat, A., Kokfelt, T., Burke, K.C., Kusky, T.M., Bradley, D.C., Dziggel, A., Kolb, J., 2016. Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Canadian Journal of Earth Sciences 53, 1336–1371. https://doi.org/10.1139/cjes-2016-0023
  • Poulsen, M.D., Keulen, N., Hinsberg, V.J. van, Kolb, J., Vennemann, T., 2018. Controls on element exchange in ultramafic-hosted plumasite-type corundum, South-East Greenland. Presented at the Goldschmidt, Goldschmidt abstracts.
  • Rosa, D., Majka, J., Thrane, K., Guarnieri, P., 2016. Evidence for Timanian-age basement rocks in North Greenland as documented through U-Pb zircon dating of igneous xenoliths from the Midtkap volcanic centers. Precambrian Research 275, 394–405. https://doi.org/10.1016/j.precamres.2016.01.005
  • Steenfelt, A., Hollis, J.A., Secher, K., 2006. The Tikiusaaq carbonatite: A new Mesozoic intrusive complex in southern West Greenland. Geological survey of Denmark and Greenland bulletin 10, 41–44, ISSN:1604-8156.
  • Stockmann, G., Karlsson, A., Lewerentz, A., Thomsen, T.B., Kokfelt, T.F., Tollefsen, E., Sturkell, E., Lundqvist, L., 2018. New Rb-Sr and Zircon U-Pb dating of the Grønnedal-Íka igneous complex, SW Greenland. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 38.
  • Szilas, K., Elis Hoffmann, J., Scherstén, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F., Keulen, N., van Hinsberg, V.J., Næraa, T., Frei, R., Münker, C., 2012. Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research 208–211, 90–123. https://doi.org/10.1016/j.precamres.2012.03.013
  • Szilas, K., Van Hinsberg, V.J., Kisters, A.F.M., Hoffmann, J.E., Windley, B.F., Kokfelt, T.F., Scherstén, A., Frei, R., Rosing, M.T., Münker, C., 2013. Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Research 23, 436–451. https://doi.org/10.1016/j.gr.2011.11.006
  • Thomsen, T.B., Heijboer, T., Guarnieri, P., 2016. jAgeDisplay: software for evaluation of data distributions in U-Th-Pb geochronology. Geological Survey of Denmark and Greenland Bulletin 35, 103–106, ISSN:1604-8156.
  • Van Schijndel, V., Cornell, D.H., Hoffmann, K.-H., Frei, D., 2011. Three episodes of crustal development in the Rehoboth Province, Namibia. Geological Society, London, Special Publications 357, 27–47. https://doi.org/10.1144/SP357.3
  • Waight, T.E., Serre, S.H., Næsby, S., Thomsen, T.B., 2017. The ongoing search for Denmark’s oldest rock: new U-Pb zircon ages for a quartz-rich xenolith and country rock from the Svaneke Granite. Bulletin of the Geological Society of Denmark 65, 75–86, ISSN: 2245-7070.
  • Zhang, W., Pease, V., Meng, Q., Zheng, R., Thomsen, T.B., Wohlgemuth-Ueberwasser, C., Wu, T., 2016. Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: its age, petrogenesis and tectonic significance. Geological Magazine 153, 512–523. https://doi.org/10.1017/S0016756815000631
  • Zhang, W., Pease, V., Meng, Q., Zheng, R., Thomsen, T.B., Wohlgemuth-Ueberwasser, C., Wu, T., 2015. Timing, petrogenesis, and setting of granites from the southern Beishan late Palaeozoic granitic belt, Northwest China and implications for their tectonic evolution. International Geology Review 57, 1975–1991. https://doi.org/10.1080/00206814.2015.1045944

Sedimentary provenance:

  • Affaton, P., Kalsbeek, F., Boudzoumou, F., Trompette, R., Thrane, K., Frei, R., 2016. The Pan-African West Congo belt in the Republic of Congo (Congo Brazzaville): Stratigraphy of the Mayombe and West Congo Supergroups studied by detrital zircon geochronology. Precambrian Research 272, 185–202. https://doi.org/10.1016/j.precamres.2015.10.020
  • Be’eri-Shlevin, Y., Gee, D., Claesson, S., Ladenberger, A., Majka, J., Kirkland, C., Robinson, P., Frei, D., 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U–Pb dating of detrital zircons. Precambrian Research 187, 181–200. https://doi.org/10.1016/j.precamres.2011.03.007
  • Ershova, V., Prokopiev, A., Andersen, T., Khudoley, A., Kullerud, K., Thomsen, T.B., 2018. U–Pb and Hf isotope analysis of detrital zircons from Devonian–Permian strata of Kotel’ny Island (New Siberian Islands, Russian Eastern Arctic): Insights into the Middle–Late Paleozoic evolution of the Arctic. Journal of Geodynamics. https://doi.org/10.1016/j.jog.2018.02.008
  • Ershova, V.B., Lorenz, H., Prokopiev, A.V., Sobolev, N.N., Khudoley, A.K., Petrov, E.O., Estrada, S., Sergeev, S., Larionov, A., Thomsen, T.B., 2016. The De Long Islands: A missing link in unraveling the Paleozoic paleogeography of the Arctic. Gondwana Research 35, 305–322. https://doi.org/10.1016/j.gr.2015.05.016
  • Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261–270. https://doi.org/10.1016/j.chemgeo.2008.07.025
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Fyhn, M.B.W., Green, P.F., Bergman, S.C., Van Itterbeeck, J., Tri, T.V., Dien, P.T., Abatzis, I., Thomsen, T.B., Chea, S., Pedersen, S.A.S., Mai, L.C., Tuan, H.A., Nielsen, L.H., 2016. Cenozoic deformation and exhumation of the Kampot Fold Belt and implications for south Indochina tectonics: DEFORMATION OF THE KAMPOT FOLD BELT. Journal of Geophysical Research: Solid Earth 121, 5278–5307. https://doi.org/10.1002/2016JB012847
  • Gee, D.G., Ladenberger, A., Dahlqvist, P., Majka, J., Be’eri-Shlevin, Y., Frei, D., Thomsen, T., 2014. The Baltoscandian margin detrital zircon signatures of the central Scandes. Geological Society, London, Special Publications 390, 131–155. https://doi.org/10.1144/SP390.20
  • Hennig, D., Lehmann, B., Frei, D., Belyatsky, B., Zhao, X.F., Cabral, A.R., Zeng, P.S., Zhou, M.F., Schmidt, K., 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113, 408–422. https://doi.org/10.1016/j.lithos.2009.04.031
  • Jones III, J.V., Daniel, C.G., Frei, D., Thrane, K., 2011. Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA: New findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marqueñas Formation. Geosphere 7, 974–991. https://doi.org/10.1130/GES00614.1
  • Kalsbeek, F., Ekwueme, B.N., Penaye, J., de Souza, Z.S., Thrane, K., 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research 226, 105–115. https://doi.org/10.1016/j.precamres.2012.12.006
  • Kalsbeek, F., Frei, D., Affaton, P., 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: An Amazonian connection? Sedimentary Geology 212, 86–95. https://doi.org/10.1016/j.sedgeo.2008.10.005
  • Knudsen, C., Frei, D., Rasmussen, T., Rasmussen, E.S., McLimans, R., 2005. New methods in provenance studies based on heavy minerals: an example from Miocene sands in Jylland, Denmark. Geological survey of Denmark and Greenland bulletin 7, 29–32, ISSN:1604-8156.
  • Knudsen, C., Hopper, J.R., Bierman, P.R., Bjerager, M., Funck, T., Green, P.F., Ineson, J.R., Japsen, P., Marcussen, C., Sherlock, S.C., Thomsen, T.B., 2018. Samples from the Lomonosov Ridge place new constraints on the geological evolution of the Arctic Ocean. Geological Society, London, Special Publications 460, 397–418. https://doi.org/10.1144/SP460.17
  • Knudsen, C., Thomsen, T.B., 2015. Composition of ilmenite and provenance of zircon in northern Brazil. Geological survey of Denmark and Greenland bulletin 33, 81–84, ISSN:1604-8156.
  • Ladenberger, A., Stefan, B., Kumpulainen, R., Morris, G., Hellström, F., Thomsen, T.B., Lynch, E.P., Vesturklett, H., 2018. Provenance of Paleoproterozoic clastic metasedimentary rocks in Norrbotten, northern Sweden. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 57.
  • Larsen, M., Christian, K., Frei, D., Frei, M., Rasmussen, T., Whitham, A.G., 2006. East Greenland and Faroe-Shetland sediment provenance and Palaeogene sand dispersal systems. Geological survey of Denmark and Greenland bulletin 10, 29–32, ISSN:1604-8156.
  • Mattias, L., Kristoffersen, M., Thomsen, T.B., Gillhespy, L., Gabrielsen, R., 2014. Revealing hidden parts of the Caledonian orogen by provenance analysis of Mesozoic sandstones. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts.
  • Meinhold, G., Frei, D., 2008. Detrital zircon ages from the islands of Inousses and Psara, Aegean Sea, Greece: constraints on depositional age and provenance. Geological Magazine 145. https://doi.org/10.1017/S0016756808005505
  • Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D., BouDagher-Fadel, M.K., 2009. Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 199–225. https://doi.org/10.1016/j.palaeo.2009.04.005
  • Meinhold, G., Morton, A.C., Fanning, C.M., Frei, D., Howard, J.P., Phillips, R.J., Strogen, D., Whitham, A.G., 2011. Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth and Planetary Science Letters 312, 164–175. https://doi.org/10.1016/j.epsl.2011.09.056
  • Mikes, T., Baresel, B., Kronz, A., Frei, D., Dunkl, I., Tolosana-Delgado, R., von Eynatten, H., 2009. Jurassic granitoid magmatism in the Dinaride Neotethys: geochronological constraints from detrital minerals. Terra Nova 21, 495–506. https://doi.org/10.1111/j.1365-3121.2009.00907.x
  • Mikes, T., Christ, D., Petri, R., Dunkl, I., Frei, D., Báldi-Beke, M., Reitner, J., Wemmer, K., Hrvatović, H., von Eynatten, H., 2008. Provenance of the Bosnian Flysch. Swiss Journal of Geosciences 101, 31–54. https://doi.org/10.1007/s00015-008-1291-z
  • Moghadam, H.S., Li, X.-H., Griffin, W.L., Stern, R.J., Thomsen, T.B., Meinhold, G., Aharipour, R., O’Reilly, S.Y., 2017. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology. Lithos 268–271, 87–101. https://doi.org/10.1016/j.lithos.2016.09.008
  • Olivarius, M., Friis, H., Kokfelt, T.F., Wilson, R., 2015. Proterozoic basement and Palaeozoic sediments in the Ringkøbing–Fyn High characterized by zircon U–Pb ages and heavy minerals from Danish onshore wells. Bulletin of the Geological Society of Denmark 63, 29–44, ISSN: 2245-7070.
  • Olivarius, M., Rasmussen, E.S., Siersma, V., Knudsen, C., Kokfelt, T.F., Keulen, N., 2014. Provenance signal variations caused by facies and tectonics: Zircon age and heavy mineral evidence from Miocene sand in the north-eastern North Sea Basin. Marine and Petroleum Geology 49, 1–14. https://doi.org/10.1016/j.marpetgeo.2013.09.010
  • Olivarius, M., Weibel, R., Friis, H., Boldreel, L.O., Keulen, N., Thomsen, T.B., 2017. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin. Basin Research 29, 113–130. https://doi.org/10.1111/bre.12140
  • Petersen, T.G., Thomsen, T.B., Olaussen, S., Stemmerik, L., 2016. Provenance shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin, Spitsbergen. Journal of the Geological Society 173, 634–648. https://doi.org/10.1144/jgs2015-076
  • Pettersson, C.H., Pease, V., Frei, D., 2010. Detrital zircon U–Pb ages of Silurian–Devonian sediments from NW Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society 167, 1019–1032. https://doi.org/10.1144/0016-76492010-062
  • Pettersson, C.H., Pease, V., Frei, D., 2009. U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–220. https://doi.org/10.1016/j.precamres.2009.09.010
  • Scherstén, A., Sønderholm, M., 2007. Provenance of Cretaceous and Paleocene sandstones in the West Greenland basins based on detrital zircon dating. Geological survey of Denmark and Greenland Bulletin 13, 29–32, ISSN:1604-8156.
  • Thomsen, T.B., Heijboer, T., Guarnieri, P., 2016. jAgeDisplay: software for evaluation of data distributions in U-Th-Pb geochronology. Geological Survey of Denmark and Greenland Bulletin 35, 103–106, ISSN:1604-8156.
  • Thrane, K., 2014. Provenance study of Paleocene and Cretaceous clastic sedimentary rocks from the Davis Strait and the Labrador Sea, based on U-Pb dating of detrital zircons. Bulletin of Canadian Petroleum Geology 62, 330–396. https://doi.org/10.2113/gscpgbull.62.4.330
  • Wotzlaw, J.F., Decou, A., von Eynatten, H., Wörner, G., Frei, D., 2011. Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U-Pb geochronology and heavy mineral provenance: Jurassic-Palaeogene evolution of north Chile and Bolivia. Terra Nova 23, 399–406. https://doi.org/10.1111/j.1365-3121.2011.01025.x

 


Rocks and minerals:
  • Berger, A., Frei, R., 2014. The fate of chromium during tropical weathering: A laterite profile from Central Madagascar. Geoderma 213, 521–532. https://doi.org/10.1016/j.geoderma.2013.09.004
  • Dyck, B., Reno, B.L., Kokfelt, T.F., 2015. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos 220–223, 253–271. https://doi.org/10.1016/j.lithos.2015.01.024
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Hutchison, M.T., Frei, D., 2009. Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance. Lithos 112, 318–333. https://doi.org/10.1016/j.lithos.2009.05.034
  • Kalsbeek, F., Affaton, P., Ekwueme, B., Frei, R., Thrane, K., 2012. Geochronology of granitoid and metasedimentary rocks from Togo and Benin, West Africa: Comparisons with NE Brazil. Precambrian Research 196–197, 218–233. https://doi.org/10.1016/j.precamres.2011.12.006
  • Liebscher, A., Franz, G., Frei, D., Dulski, P., 2007. High-Pressure Melting of Eclogite and the P-T-X History of Tonalitic to Trondhjemitic Zoisite-Pegmatites, Munchberg Massif, Germany. Journal of Petrology 48, 1001–1019. https://doi.org/10.1093/petrology/egm008
  • Müller, S., Dziggel, A., Sindern, S., Kokfelt, T.F., Gerdes, A., Kolb, J., 2018. Age and temperature-time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland: Constrained from U-Pb dating of zircon, monazite, titanite and rutile. Precambrian Research 314, 468–486. https://doi.org/10.1016/j.precamres.2018.07.002
  • van Kan Parker, M., Liebscher, A., Frei, D., van Sijl, J., van Westrenen, W., Blundy, J., Franz, G., 2010. Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melt: substitution mechanisms and the effect of iron. Contributions to Mineralogy and Petrology 159, 459–473. https://doi.org/10.1007/s00410-009-0435-0
  • Ziemann, M.A., Förster, H.-J., Harlov, D.E., Frei, D., 2005. Origin of fluorapatite–monazite assemblages in a metamorphosed, sillimanitebearing pegmatoid, Reinbolt Hills, East Antarctica. European Journal of Mineralogy 17, 567–580. https://doi.org/10.1127/0935-1221/2005/0017-0567

Biological materials:
  • Klünder, M., Hippler, D., Witbaark, R., Frei, D., 2008. Laser ablation analysis of bivalve shells – archives of environmental information. Geological survey of Denmark and Greenland Bulletin 15, 89–92, ISSN:1604-8156.
  • Nielsen, K., Serre, S.H., Thomsen, T.B., Hüssy, K., 2018. Using LA-ICPMS to investigate seasonality in Cod otolith microchemistry. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, pp. 249–250.
  • Serre, S.H., Nielsen, K., Fink-Jensen, P., Thomsen, T.B., Hüssy, K., 2018. Analysis of cod otolith microchemistry by continuous line transects using LA-ICP-MS. Geological Survey of Denmark and Greenland Bulletin 41, 91–94, ISSN:1604-8156.

Gem stones:
  • Keulen, N., Kalvig, P., 2013. Fingerprinting of corundum (ruby) from Fiskenæsset, West Greenland. Geological Survey of Denmark and Greenland Bulletin 28, 53–56, ISSN:1604-8156.
  • Keulen, N., Kalvig, P., Thomsen, T.B., Kokfelt, T.F., Vennemann, T., Jønsson, J.B., 2014. Determination of the origin of corundum (ruby and sapphire) from Tanzania by geochemical fingerprinting. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts.
  • Keulen, N., Thomsen, T.B., Schumacher, J.C., Poulsen, M.D., Kalvig, P., Vennemann, T., Salimi, R., 2018. Formation and Origin determination by geochemical fingerprinting of ruby and pink sapphire from the Fiskenæsset complex, Greenland. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 81.
  • Poulsen, M.D., Keulen, N., Hinsberg, V.J. van, Kolb, J., Vennemann, T., 2018. Controls on element exchange in ultramafic-hosted plumasite-type corundum, South-East Greenland. Presented at the Goldschmidt, Goldschmidt abstracts.

Other materials
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.

Metamorphic and magmatic petrology:

  • Lehmann, B., Burgess, R., Frei, D., Belyatsky, B., Mainkar, D., Rao, N.V.C., Heaman, L.M., 2010. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth and Planetary Science Letters 290, 142–149. https://doi.org/10.1016/j.epsl.2009.12.014
  • Nielsen, L.S., Rosing, M., Kokfelt, T.F., Thomsen, T.B., 2014. Rutile and Zircon Geochronology and Geochemistry of Banded Rocks from the Isua Supracrustal Belt, SW Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 91.

Ore petrology:

  • Bell, R.-M., Kolb, J., Waight, T.E., Bagas, L., Thomsen, T.B., 2017. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland. Mineralium Deposita 52, 383–404. https://doi.org/10.1007/s00126-016-0667-7

Sedimentary provenance:

  • Thomsen, T.B., Knudsen, C., Hinchey, A.M., 2015. Investigations of detrital zircon, rutile and titanite from present-day Labrador drainage basins: fingerprinting the Grenvillean front. Geological Survey of Denmark and Greenland Bulletin 33, 77–80, ISSN:1604-8156.
  • Thomsen, T.B., 2014. Simultaneous zircon age & trace element analysis by LA-SF-ICP-MS. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 99.

Tonny Bernt Thomsen

Senior Researcher
Petrology and Economic Geology
Phone: +45 91333885

Prices

Please contact the laboratory manager for information.